

NUOVE TERAPIE NEI LINFOMI B AGGRESSIVI E NEL MIELOMA MULTIPLO

Convegno

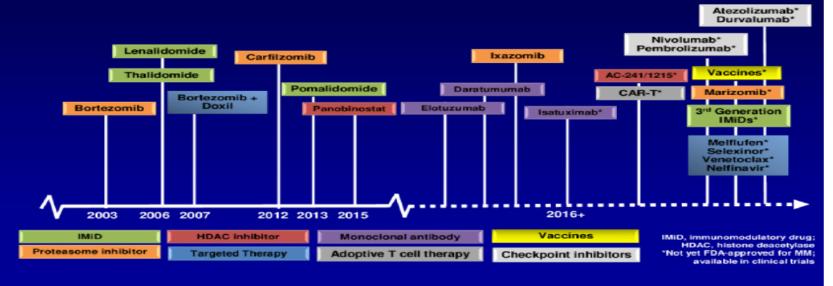
Delegazione Triveneto

Interregionale SIE

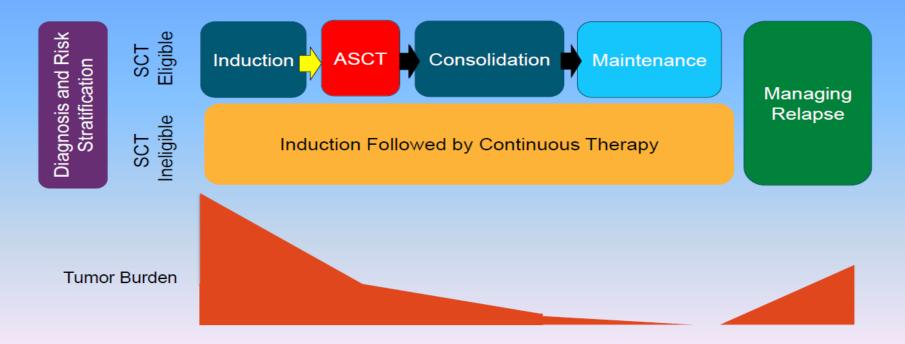
Ruolo della MRD: dagli studi clinici alla real life

Mariagrazia Michieli

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Nessun conflitto di interesse							

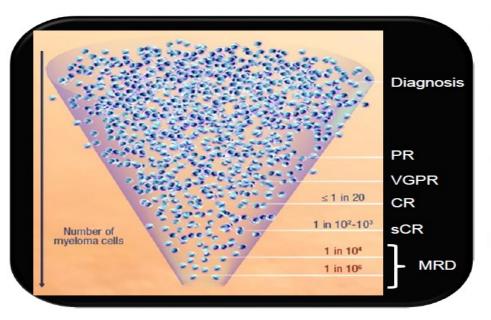


2nd Generation Novel Therapies/ Immunotherapy

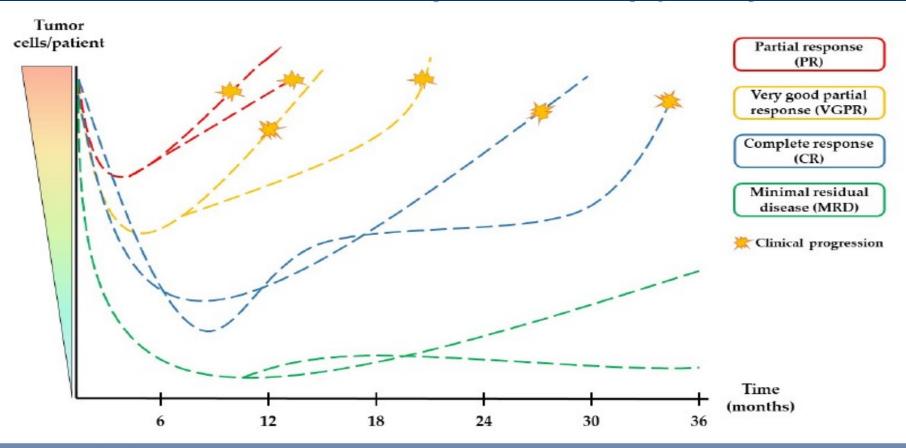


Adapted from Richardson PG. et al ASH 2015, MMRF 2016

IMW 2017 New Dehli



Paradigma del Trattameto del Mieloma Multiplo



Residual Disease is always present

- In multiple myeloma, relapse is characterized by the evolution and proliferation of residual tumor cells and decreased immune function¹⁻³
- Achievement of a CR, by current IMWG criteria, does not eliminate all myeloma clones^{4,5}
- Early and continuous suppression of residual disease may help improve disease control^{6,7}

Shaji Kumar, Bru no Paiva, Kenneth C Anderson, Brian Durie, Ola Landgren, Philippe Moreau, Nikhil Munshi, Sagar Lonial, Joan Bladé, Maria-Victoria Mateos, Meletios Dimopoulos, Efstathios Kastritis, Mario Boccadoro, Robert Orlowski, Hartmut Goldschmidt, Andrew Spencer, Jian Hou, Wee Joo Chng, SaadZ Usmani, Elena Zamagni, Kazuyuki Shimizu, Sundar Jagannath, Hans E Johnsen, Evangelos Terpos, Anthony Reiman, Robert A Kyle, Pieter Sonneveld, Paul G Richardson, Philip McCarthy, Heinz Ludwig, Wenming Chen, Michele Cavo, Jean-Luc Harousseau, Suzanne Lentzsch, Jens Hillengass, Antonio Palumbo, Alberto Orfao, SVincent Rajkumar, Jesus San Miguel, Herve Avet-Loiseau

	Standard IMWG response	criteria
	Stringent complete response	Complete response as defined below plus normal FLC ratio ^{**} and absence of clonal cells in bone marrow biopsy by immunohistochemistry (κ/λ ratio s4:1 or \approx 1:2 for κ and λ patients, respectively, after counting \approx 100 plasma cells) ^{††}
•	Complete response	Negative immunofixation on the serum and urine and disappearance of any soft tissue plasmacy tomas and <5% plasma cells in bone marrow aspirates
	Very good partial response	Serum and urine M-protein detectable by immunofixation but not on electrophoresis or ≥90% reduction in serum M-protein plus urine M-protein level <100 mg per 24 h
	Partial response	>50% reduction of serum M-protein plus reduction in 24 h urinary M-protein by >90% or to <200 mg per 24 h; If the serum and urine M-protein are unmeasurable, a >50% decrease in the difference between involved and uninvolved FLC levels is required in place of the M-protein criteria; If serum and urine M-protein are unmeasurable, and serum-free light assay is also unmeasurable, >50% reduction in plasma cells is required in place of M-protein, provided baseline bone marrow plasma-cell percentage was >30%. In addition to these criteria, if present at baseline, a >50% reduction in the size (SPD)SS of soft tissue plasmacytomas is also required
	Minimal response	25% but s49% reduction of serum M-protein and reduction in 24-h urine M-protein by 50-89%. In addition to the above listed criteria, if present at baseline, a 250% reduction in the size (SPD)SS of soft tissue plasmacy tomas is also required
	Stable disease	Not recommended for use as an indicator of response; stability of disease is best described by providing the time-to-progression estimates. Not meeting criteria for complete response, very good partial response, partial response, minimal response, or progressive disease
	Progressive disease ¶¶L	Any one or more of the following criteria: Increase of 25% from lowest confirmed response value in one or more of the following criteria: Serum M-protein (absolute increase must be ≥ 0.5 g/dL; Urine M-protein increase ≥ 1 g/dL if the lowest M component was ≥ 5 g/dL; Urine M-protein (absolute increase must be ≥ 200 mg/24 h); In patients without measurable serum and urine M-protein levels, the difference between involved and uninvolved FLC levels (absolute increase must be >10 mg/dL); In patients without measurable serum and urine M-protein levels and without measurable involved FLC levels, bone marrow plasma-cell percentage irrespective of baseline status (absolute increase must be $\ge 10\%$); Appearance of a new lesion(s), $\ge 50\%$ increase from nadir in SPDSS of >1 lesion, or $\ge 50\%$ increase in the longest diameter of a previous lesion >1 cm in short axis; $\ge 50\%$ increase in circulating plasma cells (minimum of 200 cells per µL) if this is the only measure of disease

www.thelancet.com/oncology Vol 17 August 2016

(Table 4 and footnotes continue on the next page)

International Myeloma Working Group consensus criteria for 🐴 🙀 🌘 response and minimal residual disease assessment in multiple myeloma

Shaji Kumar, Bruno Paiva, Kenneth C Anderson, Brian Durie, Ola Landgren, Philippe Moreau, Nikhil Munshi, Sagar Lonial, Joan Bladé, Maria-Victoria Mateos, Meletios Dimopoulos, Efstathios Kastritis, Mario Boccadoro, Robert Orlowski, Hartmut Goldschmidt, Andrew Spencer, Jian Hou, Wee Joo Chnq, SaadZ Usmani, Elena Zamaqni, Kazuyuki Shimizu, Sundar Jagannath, Hans E Johnsen, Evangelos Terpos, Anthony Reiman, Robert A Kyle, Pieter Sonneveld, Paul G Richardson, Philip McCarthy, Heinz Ludwig, Wenming Chen, Michele Cavo, Jean-Luc Harousseau, Suzanne Lentzsch, Jens Hillengass, Antonio Palumbo, Alberto Orfao, SVincent Rajkumar, Jesus San Miguel, Herve Avet-Loiseau

	Response criteria"	Ricerca di MRD va fatta solo				
IMWG MRD criteria (n	IMWG MRD criteria (requires a complete response as defined below)					
Sustained MRD-negati	MRD negativity in the marrow (NGF or NGS, or both) and by imaging as defined below, confirmed minimum of 1 year apart. Subsequent evaluations can be used to further specify the duration of negativity (eg. MRD-negative at 5 years)†	nei casi che hanno g raggiunto > VGPR				
Flow MRD-negative	Absence of phenotypically aberrant clonal plasma cells by NGF‡ on bone marrow aspirates using the EuroFlow standard operation procedure for MRD detection in multiple myeloma (or validated equivalent method) with a minimum sensitivity of 1 in 10° nucleated cells or higher					
Sequencing MRD-negative	Absence of clonal plasma cells by NGS on bone marrow aspirate in which presence of a clone is defined as less than two identical sequencing reads obtained after DNA sequencing of bone marrow aspirates using the LymphoSiGHT platform (or validated equivalent method) with a minimum sensitivity of 1 in 10° nucleated cells§ or higher					
Imaging plus MRD-negative	MRD negativity as defined by NGF or NGS plus disappearance of every area of increased tracer uptake found at baseline or a preceding PET/CT or decrease to less mediastinal blood pool SUV or decrease to less than that of surrounding normal tissue¶					

www.thelancet.com/oncology Vol 17 August 2016

che hanno già

. .

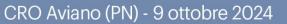
Review

Minimal Residual Disease in Multiple Myeloma: Past, Present, and Future

Alejandro Medina-Herrera ®, María Eugenia Sarasquete *, Cristina Jiménez ®, Noemí Puig and Ramón García-Sanz

	Standard MFC	NGF	ASOqPCR	NGS	ddPCR
Applicability	90–100%	90–100%	40-75%	~90%	Comparable to qPCR
Sensitivity	10^{-4} -10 ⁻⁵	$10^{-5} - 10^{-6}$	10^{-4} -10 ⁻⁵	10^{-5} - 10^{-6}	At least 10 ⁻⁵
StandardizationNoTurnaround time1 day		EuroFlow	EuroMRD ≥1 week	ClonoSEQ * 4 days–1 week	Ongoing ≥1 week
		1 day			
Specific primers/probes	Not applicable	Not applicable	Yes	No	Yes
Standard curve	Standard curve Not applicable		Yes	No	No
Influenced by SHM	No	No	Yes	Yes	Yes
Baseline BM	No	No	Yes	Yes	Yes
Fresh sample (processing time)	Yes (24–48 h)	Yes (24 h)	No	No	No

Blood-based minimal residual disease assessment


Circulating plasma cells

The presence of circulating plasma cells (CPC) in peripheral blood (PB) can be detected in most MM patients and is associated with poor prognosis. Different methods have been used to assess the presence of CPC. The standard EuroFlow NGF is reliable and requires a small volume of blood. Other methods are available that use a plasma cell enrichment method, which requires a larger blood sample, and is more sensitive but also more complex. NGF has been used to identify and track CPC in MM patients with interesting results. However, while CPC detection appears to be a powerful prognostic factor, CPC is unlikely to be a good MRD marker. Indeed, a comparison between NGF in BM and PB after therapy in a real-world case series of 137 patients showed that 40% of patients achieving bloodbased MRD negativity had BM MRD-positive disease, strongly suggesting that blood NGF-based MRD evaluation is a less sensitive MRD marker than BM MRD.^{22,25,26}

Less Sentitive in PB

Role of minimal residual disease assessment in multiple myeloma

Raphael E. Szalat,¹ Kenneth C. Anderson² and Nikhil C. Munshi²

LIQUID BIOPSY - Genomic Aberration

Circulating cell-free DNA for minimal residual disease assessment

Circulating cell-free DNA (cfDNA)-based methods, often referred to as 'liquid biopsy', allow tracking genomic aberrations such as tumor mutations, copy number aberration or translocation present in circulating cfDNA isolated from blood plasma.²⁷⁻²⁹ Multiple studies showed a high concordance of somatic mutations and copy-number alterations between BM and cfDNA of patients with MM.³⁰⁻³³ However, the low level of circulating tumor DNA is a significant challenge and most current methods are not sensitive enough. Ultradeep targeted sequencing has significantly improved the detection of cfDNA, but its sensitivity relates to the number of tumor mutations available to track and has so far only been evaluated in few clinical studies. In a study which compared blood and BM evaluation with NGS and cfDNA in 42 patients, there was only 49% consistency and poor correlation between the two methods. Similar to CPC detection, BM MRD was more often positive and suggested lack of sensitivity of the cfDNA approach.34 Novel and more sensitive methods are needed before cfDNA can be utilized as a standard approach.

Single-cell RNA sequencing

Single-cell RNA sequencing (scRNA-seq) is another powerful technology widely used in research. It allows transcriptomic analysis at a single cell level and can detect rare malignant cells.³⁵ Ongoing research is investigating whether this approach could even allow the selection of therapy based on transcriptomic features and clonal heterogeneity.36,37 However, its availability, its relative complex workflow, reproducibility and cost are significant challenges that need to be addressed before it can be considered for use in clinical practice.³⁸ This approach is also limited by the fact that it can currently only evaluate a certain number of cells, far fewer than with flow- or NGS MRD-based assessment methods. Therefore, the lack of detection of malignant cells would not necessarily correspond to negative MRD, and scRNAseq appears more as a potential complimentary method that may help tailor therapy to target MRD positive cells rather than to determine MRD status.

Role of minimal residual disease assessment in multiple myeloma

Table 1 Mass spectrometry myeloma	Somatic recombination and hypermutation				
Mass Spectrometry Method	Alternative Names	Limit of Detection	Advantages	Disadvantages	leading to an unique Heavy and light chain
MALDI-TOF	MASS-FIX EXENT	0.015 g/dL	 Quick (10 s) Can be automated 	 Not as sensitive as other MS assays 	genes
Liquid chromatography	miRAMM	0.005 g/dL	 Higher sensitivity than MALDI 	 Time-consuming (20 min per sample) M-spike lags significantly behind tumor lysis 	Discordant cases with NGS
Clonotypic peptide	EasyM M-InSight	0.00001– 0.00005 g/dL	 Highest sensitivity No interference from polyclonal background 	 Expensive Time-consuming M-spike lags significantly behind tumor lysis 	The protein is first digested
Measurable Re Disease and D Making in Mul Benjamin A. Derman, MD ^{a, *} , Rafa	ecision- ltiple My	eloma	Hematol Oncol Clin N Am 38 https://doi.org/10.1016/j.hoc.2 0889-8588/24/© 2023 Elsevier	-	
CRO Aviano (PN)	- 9 ottobre 20	024			

Offidani et al.

CRO Aviano (PN) - 9 ottobre 2024

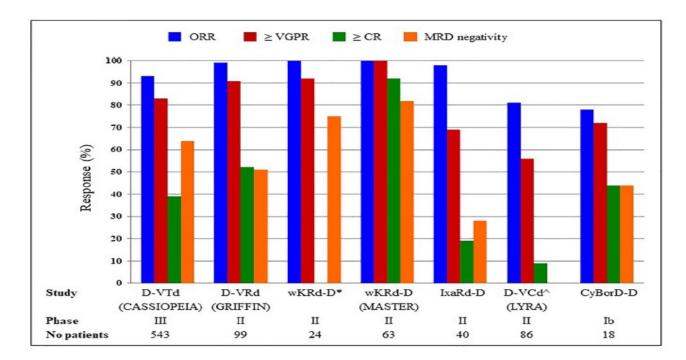


FIGURE 1 | D-VTd, daratumumab, bortezomib, thalidomide, dexamethasone; D-VRd, daratumumab, bortezomib, lenelidomide, dexamethasone; wKRd_D, weekly carfilzomib, lenalidomide, dexamethasone, daratumumab; lxaRd-D, ixazomib, lenalidomide, dexamethasone, daratumumab; D-VCd and CyBorD-D, daratumumab, cyclophosphamide, bortezomib, dexamethasone. *> CR not available; ^MRD status not available.

February 2021 | Volume 10 | Article 624661

REGULAR ARTICLE

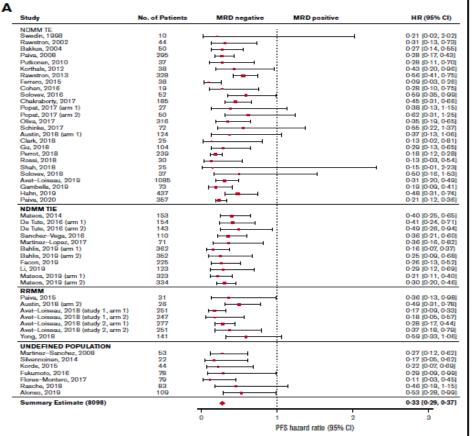
S blood advances

A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma

Nikhil C. Munshi,^{1,2} Herve Avet-Loiseau,³ Kenneth C. Anderson,¹ Paola Neri,⁴ Bruno Paiva,⁵ Mehmet Samur,¹ Meletios Dimopoulos,⁶ Margarita Kulakova,⁷ Annette Lam,⁸ Mahmoud Hashim,⁷ Jianming He,⁸ Bart Heeg,⁷ Jon Ukropec,⁹ Jessica Vermeulen,⁹ Sarah Cote,⁸ and Nizar Bahis⁴

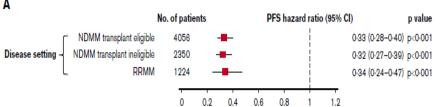
¹Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; ²Veterans Administration Boston Healthcare System, West Roxbury, MA; ³Unité de Génomique du Myélome, Institut Universitaire du Cancer de Toulouse (IUC-T) Oncopole, Toulouse, France; ⁴Arrie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canado ⁶Clinica Universitad de Navarra, Pampiona, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDSNA), Centro de Investigación ⁸Clinica Universitad de Navarra, Pampiona, Centro de Investigación Medica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDSNA), Centro de Investigación ⁸Ginecia en Red de Càncer (CIBERONC) CB16/12/00369, Madrid, Spain; ^{*}Oepartment of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, ⁶Grecos; ¹Greess Health, Rotterdam, The Netherands; ⁸Janssen Giobal Services, LLC, Raritan, NJ); and ⁹Janssen Giobal Medical Affairs, Horsham, PA

Key Points


- This meta-analysis establishes the role of MRD negativity in improving long-term survival in a heterogeneous cohort of patients with MM.
- The strong prognostic value of MRD negativity sets the stage to adopt MRD as a clinically valid surrogate biomarker for PFS and OS in MM.

The prognostic value of minimal residual disease (MRD) for progression-free survival (PFS) and overall survival (OS) was evaluated in a large cohort of patients with multiple myeloma (MM) using a systematic literature review and meta-analysis. Medline and EMBASE databases were searched for articles published up to 8 June 2019, with no date limit on the indexed database. Clinical end points stratified by MRD status (positive or negative) were extracted, including hazard ratios (HRs) on PFS and OS, P values, and confidence intervals (CIs). HRs were estimated based on reconstructed patient-level data from published Kaplan-Meier curves. Forty-four eligible studies with PFS data from 8098 patients, and 23 studies with OS data from 4297 patients were identified to assess the association between MRD status and survival outcomes. Compared with MRD positivity, achieving MRD negativity improved PFS (HR, 0.33; 95% CI, 0.29-0.37; P < .001) and OS (HR, 0.45; 95% CI, 0.39-0.51; P < .001). MRD negativity was associated with significantly improved survival outcomes regardless of disease setting (newly diagnosed or relapsed/refractory MM), MRD sensitivity thresholds, cytogenetic risk, method of MRD assessment, depth of clinical response at the time of MRD measurement, and MRD assessment premaintenance and 12 months after start of maintenance therapy. The strong prognostic value of MRD negativity and its association with favorable outcomes in various disease and treatment settings sets the stage to adopt MRD as a treatment end point, including development of therapeutic strategies. This large meta-analysis confirms the utility of MRD as a relevant surrogate for PFS and OS in MM.

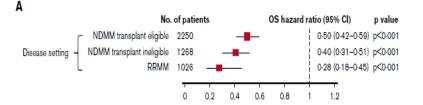
44 studi per PFS 23 studi per OS



Introduction

A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma

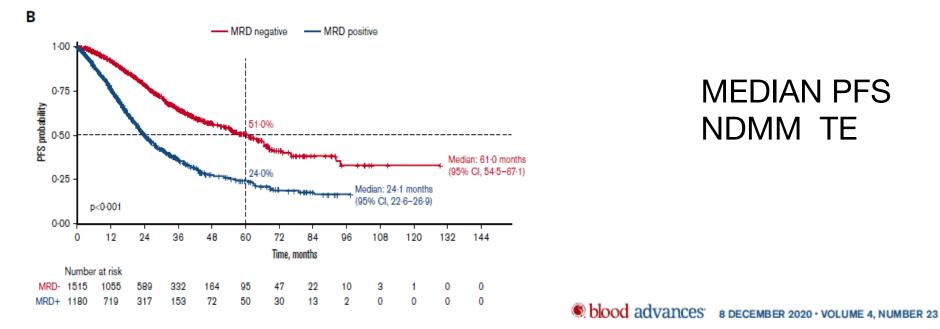
Nikhil C. Munshi,^{1,2} Herve Avet-Loiseau,³ Kenneth C. Anderson,¹ Paola Neri,⁴ Bruno Paiva,⁵ Mehmet Samur,¹ Meletios Dimopoulos,⁶ Margarita Kulakova,⁷ Annette Lam,⁹ Mahmoud Hashim,⁷ Jianming He,⁸ Bart Heeg,⁷ Jon Ukropec,⁹ Jessica Vermeulen,⁹ Sarah Cote,⁸ and Nizar Bahlis⁴


В

Study No. of Patients MRD positive HR (95% CI) MRD negative NDMM TE Rawstron, 2002 44 0-53 [0-16, 1-75] Bakkus, 2004 50 0-59 [0-21, 1-65] Paiva, 2008 205 0-50 (0-38, 0-64) H**H**H Putkonen, 2010 37 0-23 10-05, 0-071 Korthals, 2012 38 0-67 (0-26, 1-70) 287 Rawstron, 2013 0-63 (0-43, 0-00) Ferrero, 2015 38 0-32 [0-10, 1-02] Ludwig, 2015 42 0-27 10-08, 0-071 185 Chakraborty, 2017 0-55 [0-32, 0-93] Schinke, 2017 72 0-84 (0-30, 2-39) Gu. 2018 104 0-23 (0-09, 0-59) Perrot, 2018 239 0-26 10-10, 0-68 Shah 2018 25 0.25 [0.03, 2.22] 437 Hahn, 2019 0-77 (0-35, 1-67) Paiva, 2020 357 0.26 [0.10, 0.67] L NDMM TIE Mateos, 2014 153 0-48 [0-27, 0-88] De Tute, 2016 (arm 1) 154 0-41 [0-27, 0-62] 110 Sanchez-Vega, 2016 0-36 (0-18, 0-72) 71 0-27 0-07, 1-02 Martinez-Lopez, 2017 Li 2019 123 0-13 (0-02, 0-96) Mateos, 2019 (arm 1) 323 0-24 [0-08, 0-76] 334 Mateos, 2019 (arm 2) 0-44 (0-25, 0-78) RRMM 498 0-07 (0-02, 0-30) Avet-Loiseau, 2018 (study 1, pooled arms) Avet-Loiseau, 2018 (study 2, arm 1) 2770-35 [0-21, 0-59] Avet-Loiseau, 2018 (study 2, arm 2) 251 0-23 [0-06, 0-94] Summary Estimate (4297) 0-45 [0-39, 0-51] ٠ 0 0 OS hazard ratio (95% CI)

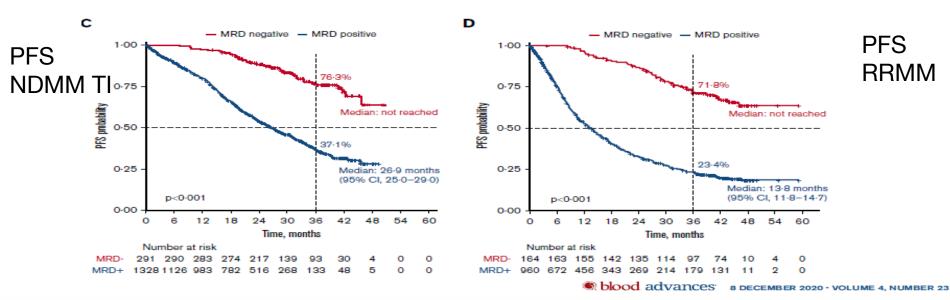
A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma

Nikhil C. Munshi,^{1,2} Herve Avet-Loiseau,³ Kenneth C. Anderson,¹ Paola Neri,⁴ Bruno Paiva,⁵ Mehmet Samur,¹ Meletios Dimopoulos,⁶ Margarita Kulakova,⁷ Annette Lam,⁸ Mahmoud Hashim,⁷ Jianming He,⁸ Bart Heeg,⁷ Jon Ukropec,⁹ Jessica Vermeulen,⁹ Sarah Cote,⁸ and Nizar Bahlis⁴

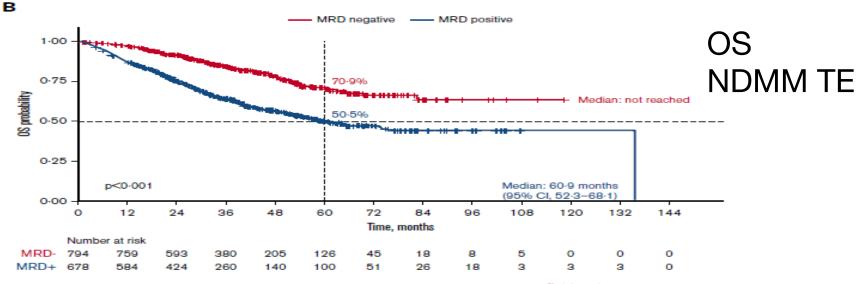


Blood advances B December 2020 · VOLUME 4, NUMBER 23

A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma

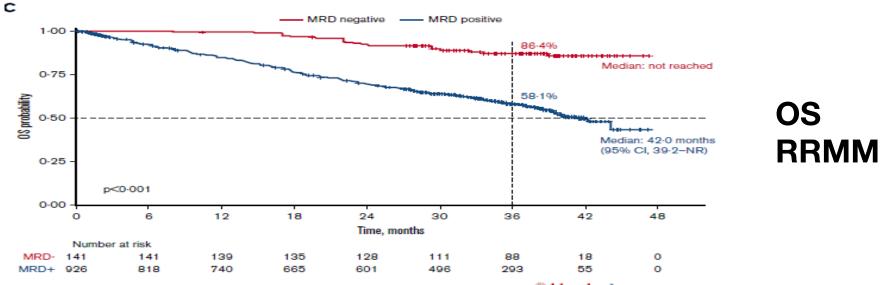

Nikhil C. Munshi,^{1,2} Herve Avet-Loiseau,³ Kenneth C. Anderson,¹ Paola Neri,⁴ Bruno Paiva,⁵ Mehmet Samur,¹ Meletios Dimopoulos,⁶ Margarita Kulakova,⁷ Annette Lam,⁸ Mahmoud Hashim,⁷ Jianming He,⁸ Bart Heeg,⁷ Jon Ukropec,⁹ Jessica Vermeulen,⁹ Sarah Cote,⁸ and

A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma


Nikhil C. Munshi,^{1,2} Herve Avet-Loiseau,³ Kenneth C. Anderson,¹ Paola Neri,⁴ Bruno Paiva,⁵ Mehmet Samur,¹ Meletios Dimopoulos,⁶ Margarita Kulakova,⁷ Annette Lam,⁸ Mahmoud Hashim,⁷ Jianming He,⁸ Bart Heeg,⁷ Jon Ukropec,⁹ Jessica Vermeulen,⁹ Sarah Cote,⁸ and Nizar Bahlis⁴

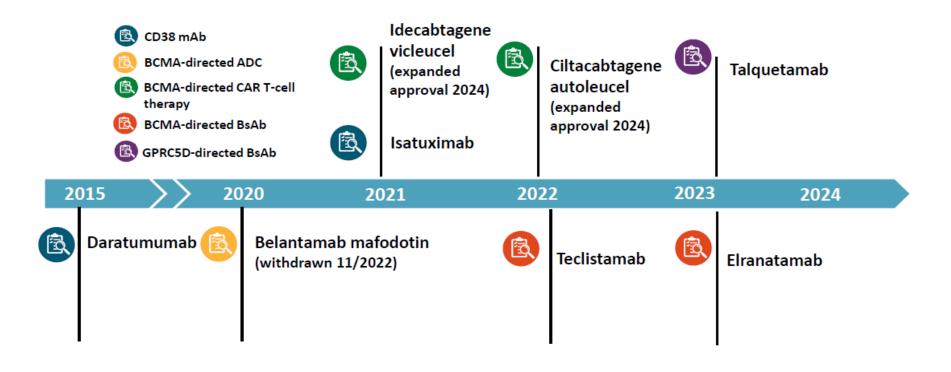
A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma

Nikhil C. Munshi,^{1,2} Herve Avet-Loiseau,³ Kenneth C. Anderson,¹ Paola Neri,⁴ Bruno Paiva,⁵ Mehmet Samur,¹ Meletios Dimopoulos,⁶ Margarita Kulakova,⁷ Annette Lam,⁸ Mahmoud Hashim,⁷ Jianming He,⁸ Bart Heeg,⁷ Jon Ukropec,⁹ Jessica Vermeulen,⁹ Sarah Cote,⁸ and Nizar Bahlis⁴



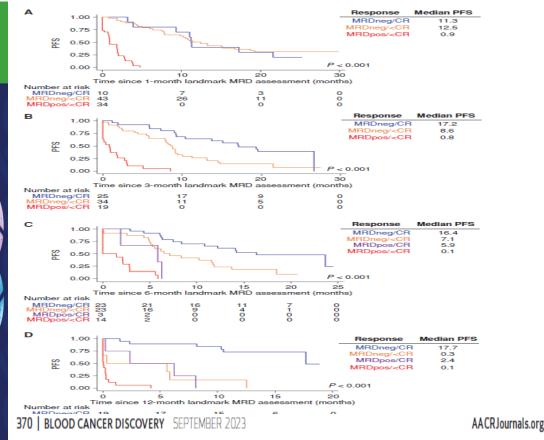
Blood advances & December 2020 - VOLUME 4, NUMBER 23

A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma


Nikhil C. Munshi,^{1,2} Herve Avet-Loiseau,³ Kenneth C. Anderson,¹ Paola Neri,⁴ Bruno Paiva,⁵ Mehmet Samur,¹ Meletios Dimopoulos,⁶ Margarita Kulakova,⁷ Annette Lam,⁸ Mahmoud Hashim,⁷ Jianming He,⁸ Bart Heeg,⁷ Jon Ukropec,⁹ Jessica Vermeulen,⁹ Sarah Cote,⁸ and Nizar Bahlis⁴

blood advances: 8 December 2020 · VOLUME 4, NUMBER 23

Novel Therapies in Multiple Myeloma



RESEARCH BRIEF

Time-Dependent Prognostic Value of Serological and Measurable Residual Disease Assessments after Idecabtagene Vicleucel

Bruno Paiva¹, Irene Manrique¹, Julie Rytlewski², Timothy Campbell³, Christian C. Kazanecki², Nathan Martin², Larry D. Anderson Jr.⁴, Jesús G. Berdeja⁵, Sagar Lonial⁶, Noopur S. Raje⁷, Yi Lin⁸, Philippe Moreau⁹, Jesús F. San-Miguel¹, Nikhil C. Munshi¹⁰, and Shari M. Kaiser²

A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma

Nikhil C. Munshi,^{1,2} Herve Avet-Loiseau,³ Kenneth C. Anderson,¹ Paola Neri,⁴ Bruno Paiva,⁵ Mehmet Samur,¹ Meletios Dimopoulos,⁶ Margarita Kulakova,⁷ Annette Lam,⁸ Mahmoud Hashim,⁷ Jianming He,⁸ Bart Heeg,⁷ Jon Ukropec,⁹ Jessica Vermeulen,⁹ Sarah Cote,⁸ and Nizar Bahlis⁴

	_ MFC⁰	2281		0.37 (0.30-0.46) <0.001	
Method of MRD assessment	NGF	661		0.22 (0.14-0.33) <0.001	_
method of mrd assessment	NGS	3974	-	0.26 (0.22-0.31) <0.001	PFS
	L PCR	321		0.27 (0.19-0.37) <0.001	
١	MFC ^e	694		0.48 (0.31-0.73) <0.001	OS
Method of MRD assessment	NGS	2175		0.34 (0.26-0.45) <0.001	00
	PCR	163		0-47 (0-27-0-81) 0-01	

S blood advances 8 DECEMBER 2020 · VOLUME 4, NUMBER 23

Medina et al. Blood Cancer Journal (2020)10:108 https://doi.org/10.1038/s41408-020-00377-0

Blood Cancer Journal

Open Access

ARTICLE

Comparison of next-generation sequencing (NGS) and next-generation flow (NGF) for minimal residual disease (MRD) assessment in multiple myeloma

Alejandro Medina[®], Noemi Puig¹, Juan Flores-Montero[®], Cristina Jimenez¹, M.-Eugenia Sarasquete[®], María Garcia-Alvarez¹, Isabel Prieto-Conde¹, Carmen Chillon¹, Miguel Alcoceba¹, Norma C. Gutierrez¹, Albert Oriol³, Laura Rosinol⁴, Joan Bladè⁴, Mercedes Gironella⁵, Miguel T. Hernandez⁶, Veronica Gonzalez-Calle¹, Maria-Teresa Cedena⁷, Bruno Paiva[®], Jesus F. San-Miguel[®], Juan-Jose Lahuerta[®], Maria-Victoria Mateos[®], Joaquin Martinez-Lopez[®], Alberto Orfao², Marcos Gonzalez¹ and Ramon Garcia-Sanz[®]

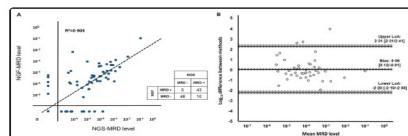
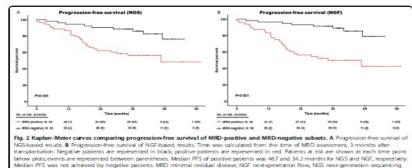



Fig. 1 Comparison of MED results. A Linear regression. Ninety-one out of one hundred and its samples (9/106, 8528) were concordant between techniques. Only 15/106 cases (1429) were discordant. Billend-Alman pito comparing NCS and NCP performance (n = 43, only double-positive cases were evaluated). Mean MED values of methods (shown in the vaxia) were calculated. Differences in login scale for each case (r_{acis}) were available were available were available were the MED evalues were well as were available as the start of the SD evalues of methods (shown in the vaxia) were available as discussed. Differences in login scale for each case (r_{acis}) were available were availed by NCS > NCF, while positive values were were strength of the scale scale where the MED estimated by NCS - NCF. Normal distribution of the differences spin start as exected (kinding cord-Smirolys > 0.05, n = 42 dogress of freedom) the Student's T=sts(t = 0.33, SD = 1.35, n = 42 dogress of freedom) was used to calculate the average of differences (billing the student's T=sts(t = 0.33, SD = 1.35, n = 42 dogress of freedom) was used to calculate the average of differences (billing the student's T=sts(t = 0.33, SD = 1.35, n = 42 dogress of freedom) was used to calculate the average of differences (billing the student's T=sts(t = 0.33, SD = 1.35, n = 42 dogress of freedom) was used to calculate the differences (SD), which means that the average estimation made by NCS tables. Overall, the bills was northing frame ($n_{calculate} = 0.05$, p = 0.05, which means that the average estimation made by NCS tables was northing the student's tables are regressived as gay shades. Overall, the bills was northing the student's doried or orthing the student's tables are calculated as the bills at the differences between methods were homogenously distributed across the range of MED levels (r_{asis}), with the limits of agreement approximately set in st0.70 and orthy 34.33 caces (7%) oxiside the acceptable range.

Medina et al. Blood Cancer Journal (2020)10:108 https://doi.org/10.1038/s41408-020-00377-0

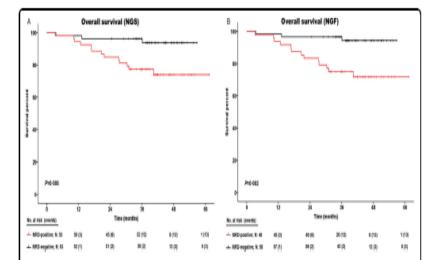
Blood Cancer Journal

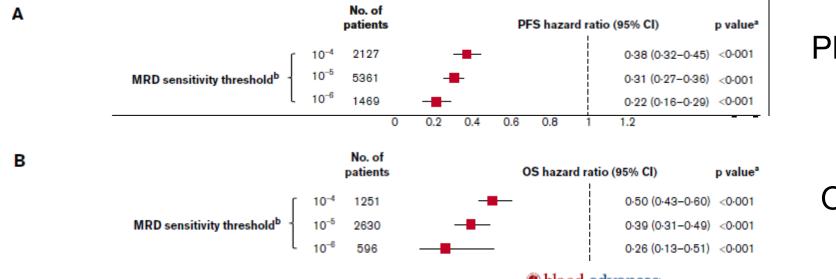
Open Access

ARTICLE

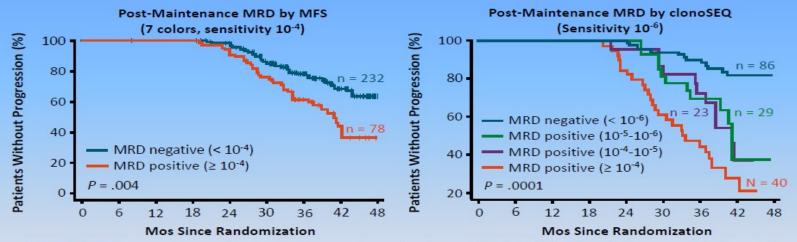
Comparison of next-generation sequencing (NGS) and next-generation flow (NGF) for minimal residual disease (MRD) assessment in multiple myeloma

Alejandro Medina, Noemi Puig¹, Juan Flores-Montero, Cristina Jimenez¹, M.-Eugenia Sarasquete, America Garcia-Alvarez¹, Isabel Prieto-Conde¹, Carmen Chillon¹, Miguel Alcoceba¹, Norma C. Gutierrez¹, Albert Oriol³, Laura Rosinol⁴, Joan Bladè⁴, Mercedes Gironella⁵, Miguel T. Hernandez⁶, Veronica Gonzalez-Calle¹, Maria-Teresa Cedena⁷, Bruno Paiva, Jesus F. San-Miguel, Juan-Jose Lahuerta, Maria-Victoria Mateos, Joaquin Martinez-Lopez, Alberto Orfao², Marcos Gonzalez¹ and Ramon Garcia-Sanz, Sanz, Sanz, Sanz, Sanz, Sanz, Contex, Sanz, Sanz,




Fig. 3 Kaptan-Meler curves comparing the overall survival of MRD-positive and MRD-negative subsets. A Overall survival of NGF-based results. B Overall survival of NGF-based results. B Overall survival of NGF-based results. The was calculated from the time of MRD assessment, 3 months after transplantation. Negative patients are represented in black; positive patients are represented in ted. Patients at risk are shown at each time point below plots; events are represented by positive patients (3-year OS rates of NGF-positive vs. NGF-negative patients; 74.9% vs. 966.%). MRD minimal residual disease, NGF-negative patients; 74.9% vs. 966.%). MRD minimal residual disease, NGF-negative patients; 74.9% vs. 966.%). MRD minimal residual disease, NGF-negative patients; 74.9% vs. 966.%). MRD minimal residual disease, NGF-next-generation flow, NGS next-generation sequencing.

A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma


Nikhil C. Munshi,^{1,2} Herve Avet-Loiseau,³ Kenneth C. Anderson,¹ Paola Neri,⁴ Bruno Paiva,⁵ Mehmet Samur,¹ Meletios Dimopoulos,⁶ Margarita Kulakova,⁷ Annette Lam,⁸ Mahmoud Hashim,⁷ Jianming He,⁸ Bart Heeg,⁷ Jon Ukropec,⁹ Jessica Vermeulen,⁹ Sarah Cote,⁸ and Nizar Bahlis⁴

S blood advances 8 December 2020 · VOLUME 4, NUMBER 23

Comparison of NGS and Flow Cytometry in DFCI IFM 2009 Post Maintenance: Sensitivity Matters

Of 163 MRD-negative patients by flow cytometry (sensitivity 10⁻⁴), 84 (51%) were MRD positive by clonoSEQ (sensitivity 10⁻⁶)

Patients that were MRD negative by flow and MRD positive by clonoSEQ (NGS) had worse outcomes

Avet-Loiseau. ASH 2015. Abstr 191.

A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma

Nikhil C. Munshi,^{1,2} Herve Avet-Loiseau,³ Kenneth C. Anderson,¹ Paola Neri,⁴ Bruno Paiva,⁵ Mehmet Samur,¹ Meletios Dimopoulos,⁶ Margarita Kulakova,⁷ Annette Lam,⁸ Mahmoud Hashim,⁷ Jianming He,⁸ Bart Heeg,⁷ Jon Ukropec,⁹ Jessica Vermeulen,⁹ Sarah Cote,⁸ and Nizar Bahlis⁴

Depth of clinical response	CR or better ^f	815	 0.38 (0.29-0.50) <0.001	PES
at the time of MRD measurement	UGPR or better ^g	959	 0.31 (0.23-0.43) <0.001	110

MRD in multiple myeloma: does CR really matter?

Bruno Paiva,¹ Jesus San-Miguel,¹ and Hervé Avet-Loiseau^{2,3}

¹Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada, Centro de Cáncer Universidad de Navarra, Instituto de Investigacion Sanitaria de Navarra, Pamplona, Spain; ²Myeloma Genomics Laboratory, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France; and ³Cancer Research Center of Toulouse, INSERM 1037, Toulouse, France

Multiple myeloma embodies the paradigm of the deeper the response, the longer the survival. However, results are conflicting regarding achievement of complete remission (CR) and minimal residual disease (MRD) negativity; some patients with persistent M protein have undetectable MRD. We reviewed the frequency of this discordance and outcomes of these patients. We spotlight possible explanations for and consequences of conflicting response criteria and suggest that MRD be assessed in patients achieving very good partial response or better in clinical trials.

MRD in multiple myeloma: does CR really matter?

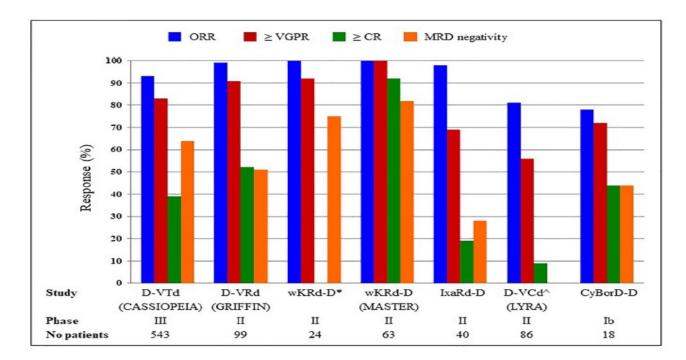
Bruno Paiva,¹ Jesus San-Miguel,¹ and Hervé Avet-Loiseau^{2,3}

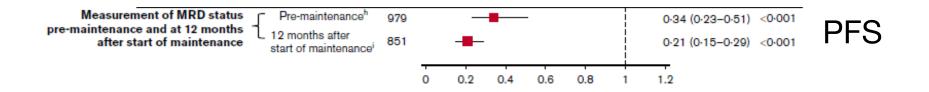
¹Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada, Centro de Câncer Universidad de Navarra, Instituto de Investigacion Sanitaria de Navarra, Pamplona, Spain; ²Myeloma Genomics Laboratory, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France; and ³Cancer Research Center of Toulouse, INSERM 1037, Toulouse, France

				Patients with un		
	Study	Method	Sensitivity	CR (%)	Less than CR (%)	Outco me
	GEM2000	Flow cytometry	10-4	94/125 (75)	31/125 (25)	Median PFS, 71 vs 65 mo
	GEM2005MAS65	Flow cytometry	10-4	24/31 (77)	7/31 (23)	Median PFS not reached in either*
>	PETHEMA/GEM†	Flow cytometry	10 ⁻⁴ to 10 ⁻⁵	177/259 (68)	82/259 (32)	Median PFS, 63 vs 62 mo
	MRC Myeloma IX	Flow cytometry	10-4	183/246 (74)	63/246 (26)	Not reported:
	NCT00861250	Flow cytometry	6 × 10 ⁻⁵	56/91 (61.5)	35/91 (38.5)	Not reported
	NCT01402284	Flow cytometry	10 ⁻⁵	29/34 (85)	5/34 (25)	Not reported
	NCT01816971	Flow cytometry	10 ⁻⁴ to 10 ⁻⁵	34/45 (75.5)	11/45 (24.5)	Not reported
	GEM2012MENO \$65	NGF	3 × 10 ⁻⁶	182/205 (89)	23/205 (11)	4-y rate, 87% vs 78.5%; P = .35
	GMMG-HD6	NGF	6 × 10 ⁻⁶	37/54 (68.5)	17/54 (31.5)	Not reported
	Tschautscher et al	NGF	10 ⁻⁵ to 2 × 10 ⁻⁶	116/204 (57)	88/204 (43)	Median PFS not reached in either§
	GEM2000	F-PCR	Not reported	19/26 (73)	7/26 (27)	Not reported
	GEM2000	ASO qRT-PCR	10 ⁻⁵	6/7 (86)	1/7 (14)	Not reported
	NCT00861250	ASO qRT-PCR	4 × 10 ⁻⁶	37/60 (62)	23/60 (38)	Not reported
	PETHEMA/GEM	NGS	10 ⁻⁵	26/30 (87)	4/30 (13)	Not reported
	NCT01402284	NGS	Not reported	22/23 (96)	1/23 (4)	Not reported
	FM-2009	NGS	10-6	54/90 (60)	36/90 (40)	Not reported

Offidani et al.

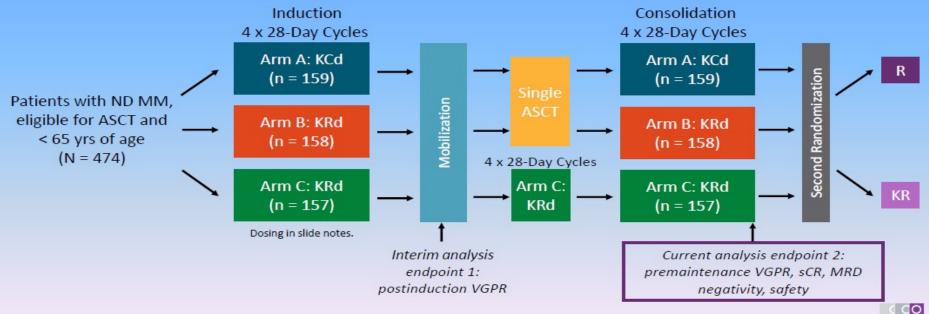
CRO Aviano (PN) - 9 ottobre 2024




FIGURE 1 | D-VTd, daratumumab, bortezomib, thalidomide, dexamethasone; D-VRd, daratumumab, bortezomib, lenelidomide, dexamethasone; wKRd_D, weekly carfilzomib, lenalidomide, dexamethasone, daratumumab; lxaRd-D, ixazomib, lenalidomide, dexamethasone, daratumumab; D-VCd and CyBorD-D, daratumumab, cyclophosphamide, bortezomib, dexamethasone. *> CR not available; ^MRD status not available.

February 2021 | Volume 10 | Article 624661

A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma


Nikhil C. Munshi,^{1,2} Herve Avet-Loiseau,³ Kenneth C. Anderson,¹ Paola Neri,⁴ Bruno Paiva,⁵ Mehmet Samur,¹ Meletios Dimopoulos,⁶ Margarita Kulakova,⁷ Annette Lam,⁸ Mahmoud Hashim,⁷ Jianming He,⁸ Bart Heeg,⁷ Jon Ukropec,⁹ Jessica Vermeulen,⁹ Sarah Cote,⁸ and Nizar Bahlis⁴

FORTE Premaintenance Analysis: Study Design

Multicenter, randomized, open-label phase II study

Gay. ASH 2018. Abstr 121.

Slide credit: clinicaloptions.com

\$

Carfilzomib with cyclophosphamide and dexamethasone or lenalidomide and dexamethasone plus autologous transplantation or carfilzomib plus lenalidomide and dexamethasone, followed by maintenance with carfilzomib plus lenalidomide or lenalidomide alone for patients with newly diagnosed multiple myeloma (FORTE): a randomised, open-label, phase 2 trial

Francesca Gay^{*}, Pellegrino Musto^{*}, Delia Rota-Scalabrini, Luca Bertamini, Angelo Belotti, Monica Galli, Massimo Offidani, Elena Zamagni, Antonio Ledda, Mariella Grasso, Stelvio Ballanti, Antonio Spadano, Michele Cea, Francesca Patriarca, Mattia D'Agostino, Andrea Capra, Nicola Giuliani, Paolo de Fabritiis, Sara Aquino, Angelo Palmas, Barbara Gamberi, Renato Zambello, Maria Teresa Petrucci, Paolo Corradini, Michele Cavo, Mario Boccadoro

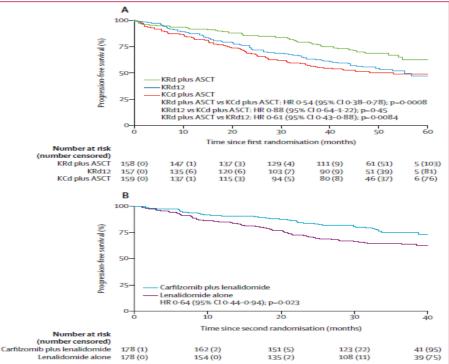
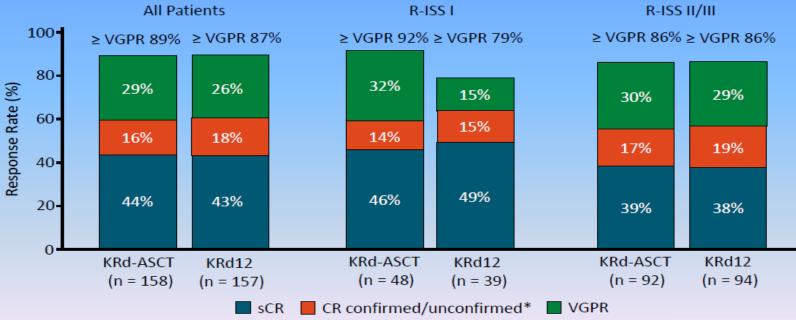
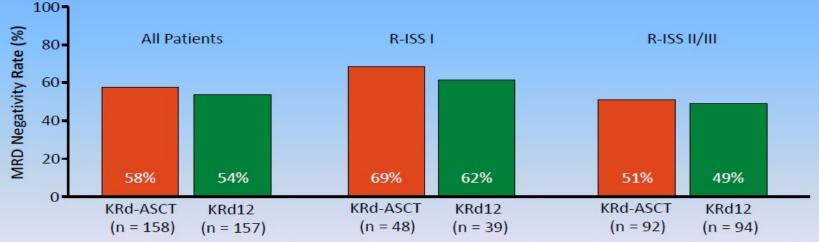



Figure 2: Survival outcomes according to first and second randomisation

(A) Kaplan-Meier estimates of progression-free survival from first randomisation. (B) Kaplan-Meier estimates of progression-free survival from second (maintenance) randomisation. HR=hazard ratio. KRd=carfilzomib plus lenalidomide plus dexamethasone. ASCT=autologous stem-cell transplantation. KCd=carfilzomib plus cyclophosphamide plus dexamethasone. MEL200=melphalan at 200 mg/m². KRd plus ASCT=four KRd induction cycles, MEL200-ASCT, and four KRd consolidation cycles. KRd12=12 KRd cycles. KCd plus ASCT=four KCd induction cycles, MEL200-ASCT, and four KCd consolidation cycles.

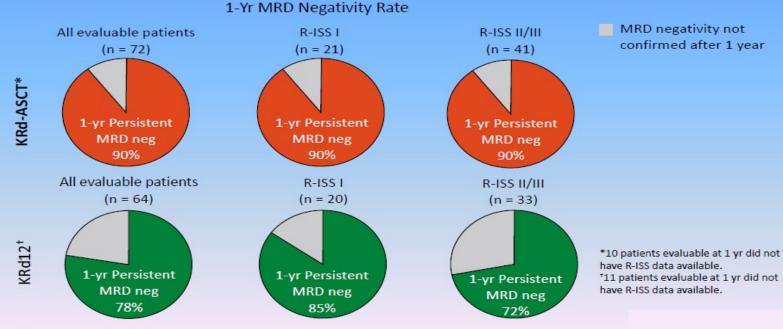
FORTE: Premaintenance Response Rates by Risk Status


*Unconfirmed patients missing immunofixation/sFLC analysis.

Gay. ASCO 2019. Abstr 8002. Reproduced with permission.

FORTE: Premaintenance MRD Negativity by Risk Status

Premaintenance MRD Negativity*



*MRD negativity was assessed by second-generation flow cytometry (sensitivity 10⁻⁵); Patients whose samples were not available for MRD analysis (~ 10%) were considered as positive; 13% of MRD-negative patients in KRd-ASCT arm and 17% in KRd12 arm had no available R-ISS data.

Gay. ASCO 2019. Abstr 8002. Reproduced with permission.

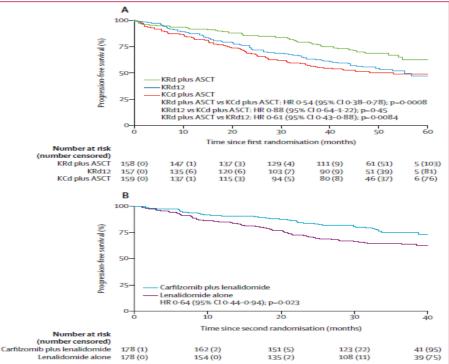
FORTE: 1-Yr MRD Negativity Rate by Risk Status

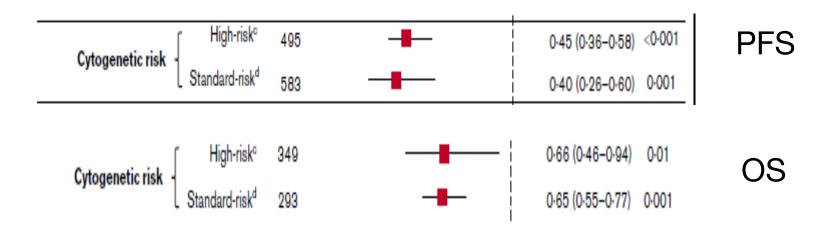
Gay. ASCO 2019. Abstr 8002. Reproduced with permission.

\$

Carfilzomib with cyclophosphamide and dexamethasone or lenalidomide and dexamethasone plus autologous transplantation or carfilzomib plus lenalidomide and dexamethasone, followed by maintenance with carfilzomib plus lenalidomide or lenalidomide alone for patients with newly diagnosed multiple myeloma (FORTE): a randomised, open-label, phase 2 trial

Francesca Gay^{*}, Pellegrino Musto^{*}, Delia Rota-Scalabrini, Luca Bertamini, Angelo Belotti, Monica Galli, Massimo Offidani, Elena Zamagni, Antonio Ledda, Mariella Grasso, Stelvio Ballanti, Antonio Spadano, Michele Cea, Francesca Patriarca, Mattia D'Agostino, Andrea Capra, Nicola Giuliani, Paolo de Fabritiis, Sara Aquino, Angelo Palmas, Barbara Gamberi, Renato Zambello, Maria Teresa Petrucci, Paolo Corradini, Michele Cavo, Mario Boccadoro



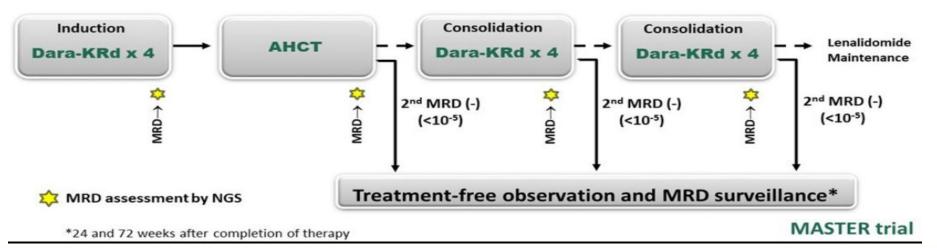

Figure 2: Survival outcomes according to first and second randomisation

(A) Kaplan-Meier estimates of progression-free survival from first randomisation. (B) Kaplan-Meier estimates of progression-free survival from second (maintenance) randomisation. HR=hazard ratio. KRd=carfilzomib plus lenalidomide plus dexamethasone. ASCT=autologous stem-cell transplantation. KCd=carfilzomib plus cyclophosphamide plus dexamethasone. MEL200=melphalan at 200 mg/m². KRd plus ASCT=four KRd induction cycles, MEL200-ASCT, and four KRd consolidation cycles. KRd12=12 KRd cycles. KCd plus ASCT=four KCd induction cycles, MEL200-ASCT, and four KCd consolidation cycles.

A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma

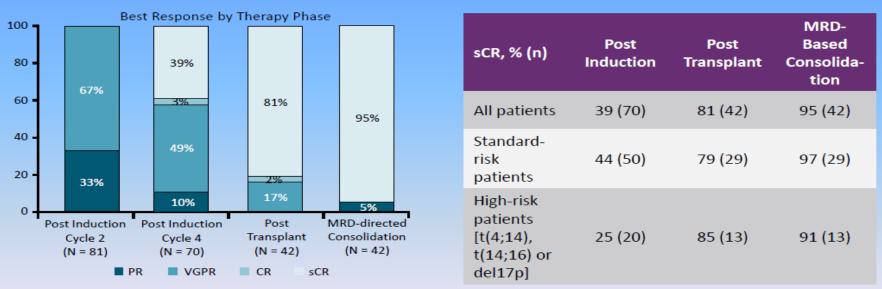
Nikhil C. Munshi,^{1,2} Herve Avet-Loiseau,³ Kenneth C. Anderson,¹ Paola Neri,⁴ Bruno Paiva,⁵ Mehmet Samur,¹ Meletios Dimopoulos,⁶ Margarita Kulakova,⁷ Annette Lam,⁸ Mahmoud Hashim,⁷ Jianming He,⁸ Bart Heeg,⁷ Jon Ukropec,⁹ Jessica Vermeulen,⁹ Sarah Cote,⁸ and Nizar Bahlis⁴

S blood advances 8 DECEMBER 2020 · VOLUME 4, NUMBER 23



MASTER trial: Daratumumab + KRD in transplant eligible patients

Primary endpoint: MRD-negative remission (< 10⁻⁵) on NGS assay


Dara-KRd

- Daratumumab 16 mg/m² days 1,8,15,22 (days 1,15 C 3-6; day 1 C >6)
- Carfilzomib (20) 56 mg/m² Days 1,8,15
- Lenalidomide 25 mg Days 1-21
- Dexamethasone 40mg PO Days 1,8,15,22

MASTER: Best Response by Treatment Phase

 n = 27 (n= 19 standard risk, n = 7 high risk) achieved MRD-negative status and entered observation phase; no relapse or MRD positivity at median median follow-up of 4.9 mos

Costa. ASH 2019. Abstr 860.

Minimal residual disease response-adapted therapy in newly diagnosed multiple myeloma (MASTER): final report of the multicentre, single-arm, phase 2 trial

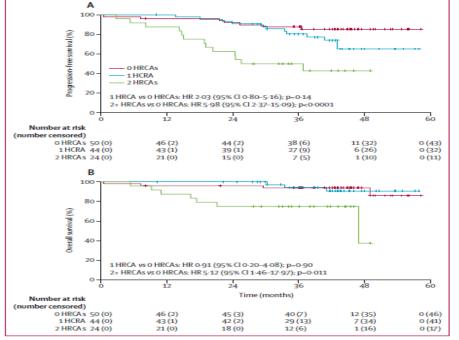


Figure 2: Survival data for participants for whom MRD was evaluable. by cytogenetic risk group Progression-free survival (A) and overall survival (B) for the 118 participants for whom MRD was evaluable, according to cytogenetic risk group. HRCA=high-risk chromosome abnormality. MRD=minimal residual disease.

CRO Aviano (PN) - 9 ottobre 2024

96/118 Reached MDR neg

PFS 36 months 88% in 0 HRCAs 79% in 1 HRCAs 50% in 2 HRCAs

Minimal residual disease response-adapted therapy in newly diagnosed multiple myeloma (MASTER): final report of the multicentre, single-arm, phase 2 trial

Progression-free survival (A, C) and overall survival (B, D) for the 84 participants who transitioned to MRD-SURE, according to cytogenetic risk group. In panels (C) and (D), the analysis is landmarked at the onset of MRD-SURE. HRCA=high-risk chromosome abnormality. MRD=minimal residual disease. MRD-SURE=treatment-free observation with MRD surveillance

Clinical trial	Patient population	Treatment scheme
UMCC 2018.056	Phase 2 Study With Minimal	This phase 2 trial will test whether the combination of DaraRd (daratumumab + lenalidomide +
(NCT04140162)	Residual Disease (MRD) Driven	dexamethasone) as induction therapy, followed by DRVd (daratumumab + lenalidomide +
	Adaptive Strategy in Treatment for	bortezomib + dexamethasone) consolidation therapy, if needed, will result in more patients
	Newly Diagnosed Multiple	achieving minimal residual disease (MRD)-negative status, relative to the standard of care.
	Myeloma (MM) With Upfront	Consolidation therapy will be administered only to those patients with MRD-positive status
	Daratumumab-based Therapy	after induction therapy.
MIDAS	MInimal Residual Disease Adapted	IFM 2020-02 will enroll patients eligible for ASCT less than 60 years. All patients will receive
NCT04934475	Strategy (MIDAS)	induction based on 6 cycles (28-day) of KRD-Isatuximab (Isa-KRD), in order to achieve deep
		responses and high MRD negativity rates. Patients will be classified at diagnosis according to
	Phase 3 clinical trials in newly	cytogenetics (standard vs high-risk cytogenetics defined by the LP score including 17p
	diagnosed MM patients	deletion, t(4;14), del(1p32), gain 1q, trisomy 21 and trisomy 5.
	onghoseo wiwi parano	
DEDCEIIC	Phase 2 division 1 division 1	A Diversity of the Diversity of ADE (Diversity Line) in the state of
PERSEUS	Phase 3 clinical trial Daratumumab,	A Phase 3 Study Comparing Daratumumab, VELCADE (Bortezomib), Lenalidomide, and
(NCT03710603)	VELCADE (Bortezomib),	Dexamethasone (D-VRd) vs VELCADE, Lenalidomide, and Dexamethasone (VRd) in
	Lenalidomide and Dexamethasone	Subjects with Previously Untreated Multiple Myeloma Who Are Eligible for High-dose
	Compared to VELCADE,	Therapy. MRD-negative subjects will stop daratumumab after sustained MRD negativity for 12
	Lenalidomide and Dexamethasone	months & after a min. of 24 months of maintenance. Daratumumab should be restarted at
	in Subjects With Previously	recurrence of MRD or confirmed loss of CR without disease progression.
DD 41 D 44 TO 3	Untreated Multiple Myeloma	
DRAMMATIC	Phase 3 clinical trial Lenalidomide	In this trial, patients who received HDCSCT are randomized between Lenalidomide for 2 years
(NCT04071457)	+/- Daratumumab/rHuPh20 as Post-	and Lenalidomide + Daratumumab. After 2 years of Maintenance, MRD is assessed to guide
	ASCT Maintenance for MM	further therapy. MRD-positive patients will continue with the assigned treatment. MRD-
	w/MRD to Direct Therapy Duration	negative patients will be further randomized to either continue or discontinue the assigned
	(DRAMMATIC)	treatment.

EMIN20 (NCT04096066)	Phase 3 clinical trial. A Trial That Compares Two Treatments in Newly Diagnosed Myeloma Patients Not Eligible for Transplant (KRd vs Rd)	This protocol is a randomized, multicenter study designed to determine the MRD negativity and the PFS of KRd treatment regimen. Patients will be randomized in a 1:1 ratio to receive carfilzomib-lenalidomide-dexamethasone (KRd - Arm A) or lenalidomide-dexamethasone (Rd - Arm B). Patients will be stratified basing on international staging system (ISS) and fitness status using a web-based procedure completely concealed to study participants. Patients will be treated until disease progression or intolerance to the therapy. The only exception is for patients enrolled in KRd arm who achieve at least a VGPR during the first year of treatment and in sustained MRD negativity (MRD negative at least at 10-5 after one and two years of therapy): these patients will stop carfilzomib administration after 2 years, whereas treatment with lenalidomide and dexamethasone will be continued.
MASTER-2 (NCT05231629)	Phase 2 clinical trial. Sequential Therapy in Multiple Myeloma Guided by MRD Assessments (MASTER-2)	This research study will determine the proportion of patients with lowest minimal residual disease (MRD) response obtainable after receiving 6 cycles of study treatment. Minimal residual disease is multiple myeloma cells below the level of 1 cancer cell out of 100,000 in the bone marrow. For patients who become MRD "negative" (i.e. less than 1 cancer cell out of 100,000) at the end of 6 cycles of therapy, this study will study if that good response can be maintained with 3 additional cycles of treatment instead of use of autologous hematopoietic cell transplantation (AHCT). For patients who are MRD "positive" at the end of 6 cycles of therapy, this study will answer whether more patients can become and remain MRD "negative" with AHCT plus teclistamab in combination with daratumumab when compared with patients who undergo AHCT followed by lenalidomide (an established anti-myeloma drug) plus daratumumab.
RADAR (EudraCT 2019-001258-25)	Phase 3 clinical trial. Risk-Adapted therapy Directed According to Response comparing treatment escalation and de-escalation strategies in newly diagnosed patients with multiple myeloma (NDMM) suitable for stem cell transplant.	All participants will receive the same initial induction treatment and during this time will have genetic tests to determine whether they have 'standard-risk' or 'high-risk' disease. Following this chemotherapy treatment participants will receive AHCT. After induction treatment participants will be allocated to a second stage treatment group based on their genetic risk, high-risk or standard-risk, and on how well the myeloma has responded to the initial treatment. Each treatment group will then receive different combinations of medication to investigate their benefit. Treatment will comprise of combinations of isatuximab, bortezomib, cyclophosphamide, lenalidomide and dexamethasone.

Discover Oncology

Research

Real-world prognostic significance of attaining minimal residual disease negativity in newly diagnosed multiple myeloma

Jing Wang¹ · Jing Li¹ · Run Zhang¹ · Jianyong Li¹ · Lijuan Chen¹ · Yuanyuan Jin¹

Received: 9 September 2023 / Accepted: 11 February 2024 Published online: 17 February 2024 © The Author(s) 2024 OPEN

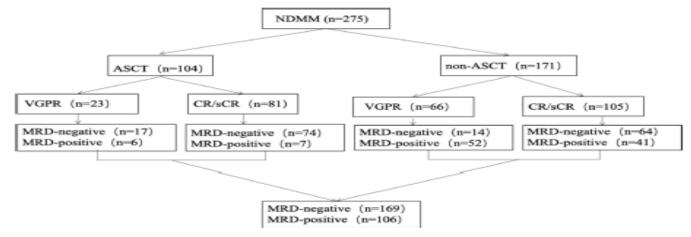
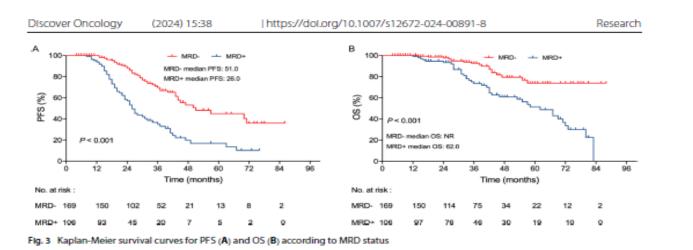
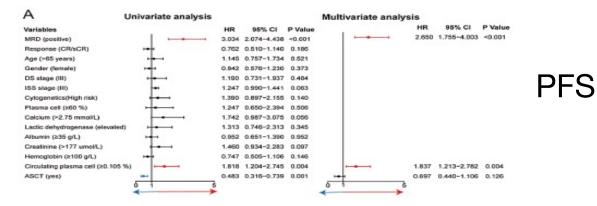


Fig. 1 Study flow chart


Discover Oncology

Research

Real-world prognostic significance of attaining minimal residual disease negativity in newly diagnosed multiple myeloma


Jing Wang¹ · Jing Li¹ · Run Zhang¹ · Jianyong Li¹ · Lijuan Chen¹ · Yuanyuan Jin¹

Received: 9 September 2023 / Accepted: 11 February 2024 Published online: 17 February 2024 © The Author(s) 2024 OPEN

s,

в

Univariate analysis

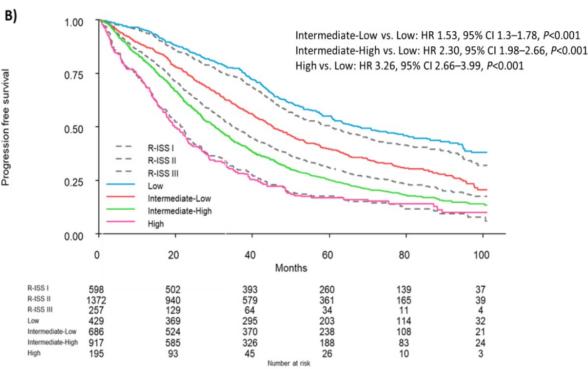
Multivariate analysis

<u>7</u>C

Variables		HR	95% CI	P Value		HR	95% CI	P Value	
MRD (positive)	⊢ • → •	3.038	1.738-5.311	< 0.001		2.122	1.155-3.899	0.015	
Response (CR/sCR)		0.616	0.364-1.044	0.072					
Age (>65 years)		1.780	1.023-3.098	0.041	+•	1.458	0.803-2.646	0.215	
Gender (male)		0.857	0.510-1.440	0.561					
DS stage (III)	·	1.223	0.616-2.428	0.564					
ISS stage (III)		1.315	1.011-1.709	0.041		1.13	0.815-1.555	0.464	
Cytogenetics(High risk)		0.890	0.463-1.713	0.728					
Plasma cell (#60 %)		2.159	1.018-4.576	0.045	· · · · · ·	1.625	0.737-3.581	0.229	- (
Calcium (>2.75 mmol/L)		2.058	1.008-4.245	0.048	·+•	1,518	0.671-3.437	0.317	•
Lactic dehydrogenase (elevated)	· · · ·	1.705	0.831-3.498	0.146					
Albumin (≥35 g/L)		0.744	0.434-1.275	0.282					
Creatinine (>177 umol/L)		1.794	1.005-3.199	0.048		1.093	0.533-2.245	0.808	
Hemoglobin (2100 g/L)	++++	0.741	0.427-1.287	0.287	1 () () () () () () () () () (
Circulating plasma cell (≥0.105 %)		1.839	1.038-3.256	0.037	++	1.572	0.880-2.810	0.127	
ASCT (yes)		0.244	0.110-0.540	0.001		0.409	0.158-1.059	0.065	
	61 3				51 3				
				-	<>				

Fig. 4 Univariate and multivariate Cox proportional hazards regressions for PFS (A) and OS (B)

- Measurable (minimal) residual disease (MRD) is one of the most powerful prognostic factors for progression-free survival and overall survival.
- There are several ways to assess for MRD; bone marrow methods such as next-generation sequencing and next-generation flow cytometry can achieve sensitivity thresholds of 10⁻⁶.
- Each increase in MRD sensitivity threshold is associated with improved prognostication, and sustained MRD negativity carries greater significance than a single instance of MRD negativity.
- Peripheral blood techniques, chiefly mass spectrometry, to assess for MRD are quickly moving from research only to clinical use.
- MRD-adapted clinical decision-making is controversial, but there is mounting evidence that MRD-guided de-escalation of therapy is feasible and may not compromise clinical outcomes.


Measurable Residual Disease and Decision-Making in Multiple Myeloma

CRO Aviano (PN) - 9 ottobre 2024

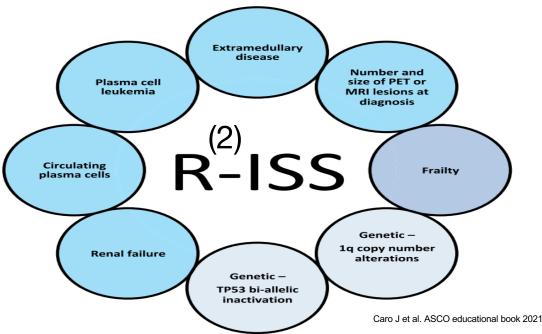
Benjamin A. Derman, мо^{а,}*, Rafael Fonseca, мо^b

Hematol Oncol Clin N Am 38 (2024) 477–495 https://doi.org/10.1016/j.hoc.2023.12.009 0889-8588/24/© 2023 Elsevier Inc. All rights reserved.

PFS according to the R2-ISS risk score

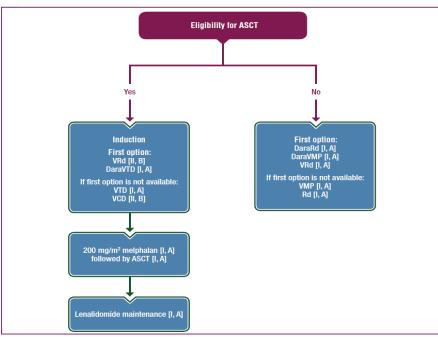
Abbreviations. OS, overall survival; PFS, progression-free survival; pts, patients; R-ISS, Revised International Staging System stage; HR, hazard ratio; CI, confidence interval; P, p-value.

D'Agostino M et al. ASH 2020; Abstract 1329



Definition	
IMWG frailty score Modified IMWG frailty score R-MCI GAH	Patient- and disease-based factors for the identification of high-risk MM
Extramedullary disease (no bone- related plasmacytomas) Plasma cell leukemia LDH elevated	
del(17p), t(4;14), t(14;16), amp1q, del(1p)	
TP53	
LDH elevated β2-microglobulin ≥5.5mg/L Albumin levels ≤3.5mg/L	
R-ISS III: beta2-microglobulin ≥5.5mg/L plus either LDH elevated or high-risk CA (del(17p), t(4;14), or t(14;16))	
	IMWG frailty score Modified IMWG frailty score R-MCI GAH Extramedullary disease (no bone- related plasmacytomas) Plasma cell leukemia LDH elevated del(17p), t(4;14), t(14;16), amp1q, del(1p) <i>TP53</i> LDH elevated β2-microglobulin ≥5.5mg/L Albumin levels ≤3.5mg/L R-ISS III: beta2-microglobulin ≥5.5mg/L plus either LDH elevated or high-risk

GAH, geriatric assessment in hematology; R-MCI, Revised Myeloma Comorbidity Index.



Proposed modifications to R-ISS to incorporate additional high risk features

M. A. Dimopoulos et al.

Figure 1. Recommendations for MM front-line therapy.

AŠCT, autologous stem cell transplantation; Darakā, daratumumab/lenalidomide/dexamethasone; DaraVMP, daratumumab/bortezomib/melphalan/prednisone; DaraVTD, daratumumab/bortezomib/halidomide/dexamethasone; MM, multiple myeloma; Rd, lenalidomide/dexamethasone; VCD, bortezomib/ve/clophosphamide/ dexamethasone; VMP, bortezomib/melphalan/prednisone; VRd, bortezomib/lenalidomide/dexamethasone; VTD, bortezomib/helidomide/dexamethasone

SPECIAL ARTICLE

Multiple myeloma: EHA-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up †

M. A. Dimopoulos¹, P. Moreau², E. Terpos¹, M. V. Mateos³, S. Zweegman⁴, G. Cook⁵, M. Delforge⁶, R. Hájek⁷, F. Schjesvold^{8,9}, M. Cavo¹⁰, H. Goldschmidt¹¹, T. Facon¹², H. Einsele¹³, M. Boccadoro¹⁴, J. San-Miguel¹⁵, P. Sonneveld¹⁶ & U. Mey¹⁷, on behalf of the EHA Guidelines Committee^{*} and ESMO Guidelines Committee^{*}

¹Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; ²Department of Hematology, University Hospital Hötel-Dieu, Nantes, France; ¹University Hospital of Salamanca, IBSAL, Cancer Research Center, Salamanca, Spain; ⁶Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands; ¹Leeds Cancer Centre and University of Leeds, Leeds, UK; ⁶Department of Hematology, University Hospital, Oslo; ⁶KG Jebsen Center for B Cell Malgnancies, University of Oslo, Oslo, Norway; ¹⁰Seràgnoli Institute of Hematology, Bologna University School of Medicine, Bologna, Italy; ¹¹University Hospital Heidelberg, Internal Medicine V and National Center for Tumor Diseases (NCT), Heidelberg, Germany; ¹²Apital Claude Huriez, Lille University Hospital, Lille, France; ¹³Department of Internal Medicine II, University Hospital Wurzburg, Germany; ¹⁴Dipital Claude Huriez, Lille University Otol Città della Salute e della Scienza di Torino, Torino, Italy; ¹⁵Cinica University do Navara, CIMA, IDISMA, CIERONC, Pamplona, Sanji; ¹⁶Ersamus Medical Center Cancer Institute, Rotterdam, Netherlands; ¹⁷Department of Oncology and Hematology, Kantonspital Graubünder, Chur, Switzerland

Available online 3 February 2021

International Myeloma Working Group consensus criteria for 🐴 🤬 💽 response and minimal residual disease assessment in multiple myeloma

Shaji Kumar, Bru no Paiva, Kenneth C Anderson, Brian Durie, Ola Landgren, Philippe Moreau, Nikhil Munshi, Sagar Lonial, Joan Bladé, Maria-Victoria Mateos, Meletios Dimopoulos, Efstathios Kastritis, Mario Boccadoro, Robert Orlowski, Hartmut Goldschmidt, Andrew Spencer, Jian Hou, Wee Joo Chng, Saad Z Usmani, Elena Zamagni, Kazuyuki Shimizu, Sundar Jagannath, Hans E Johnsen, Evangelos Terpos, Anthony Reiman, Robert A Kyle, Pieter Sonneveld, Paul G Richardson, Philip McCarthy, Heinz Ludwig, Wenming Chen, Michele Cavo, Jean-Luc Harousseau, Suzanne Lentzsch, Jens Hillengass, Antonio Palumbo, Alberto Orfao, SV incent Rajkumar, Jesus San Miguel, Herve Avet-Loiseau

(Continued from previous page)						
Clinical relapse	Clinical relapse requires one or more of the following criteria: Direct indicators of increasing disease and/or end organ dysfunction (CRAB features) related to the underlying clonal plasma-cell proliferative disorder. It is not used in calculation of time to progression or progression-free survival but is listed as something that can be reported optionally or for use in clinical practice; Development of new soft tissue plasmacytomas or bone lesions (osteoporotic fractures do not constitute progression); Definite increase in the size of existing plasmacytomas or bone lesions. A definite increase is defined as a 50% (and ≥1 cm) increase as measured serially by the SPDSS of the measurable lesion; Hypercalcaemia (>11 mg/dL); Decrease in haemoglobin of ≥2 g/dL not related to therapy or other non-myeloma-related conditions; Rise in serum creatinine by 2 mg/dL or more from the start of the therapy and attributable to myeloma; Hyperviscosity related to serum paraprotein					
Relapse from complete response (to be used only If the end point is disease-free survival)	Any one or more of the following criteria: Reappearance of serum or urine M-protein by immunofixation or electrophoresis; Development of ≥5% plasma cells in the bone marrow; Appearance of any other sign of progression (ie, new plasmacytoma, lytic bone lesion, or hypercalcaemia see above)					
Relapse from MRD negative (to be used only If the end point is disease-free survival)	Any one or more of the following criteria: Loss of MRD negative state (evidence of clonal plasma cells on NGF or NGS, or positive imaging study for recurrence of myeloma); Reappearance of serum or urine M-protein by immunofication or electrophoresis; Development of ≥5% clonal plasma cells in the bone marrow; Appearance of any other sign of progression (ie, new plasmacytoma, lytic bone lesion, or hypercalcaemia)					

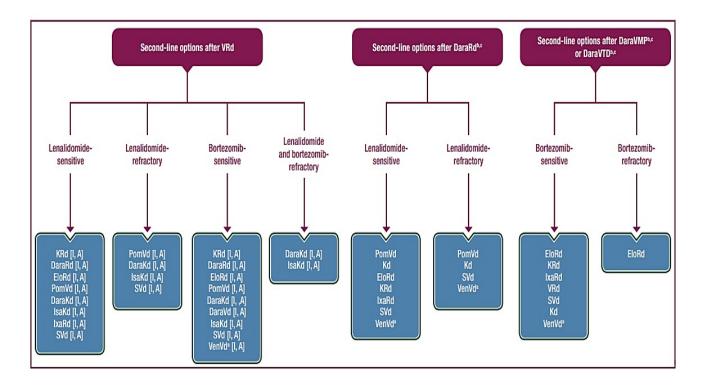
Fattori prognostici nel mieloma

Fattori intrinseci alla malattia

Fattori correlati al paziente

Carica tumorale (tumor load)

Risposta alla terapia



Patient-related Disease-related Therapy-related Response/Refractoriness to previous Risk status (high, intermediate, Age Performance status therapy standard) Comorbidities (renal insufficiency, Prior stem cell transplant Depth and duration of response to preexisting neuropaty, diabetes, Toxicity: myelosuppression, previous therapy cardiac) neuropaty, thrombosis, GI tolerance Aggressiveness of relapse (rapid M Poor BM reserve (previous Single agent vs combination protein growth, organ damage, myelosuppression) plasma cell leukemia) therapies Social factors (support system, • Mode af administration (PO, SQ, Chromosomal abnormalities accessibility to treatment center) IV)

- Cost
- Risk of second primary malignancy


patients who received a front-line therapy

ESMO 2021 Convegno Regionale SIE ive a third or subsequent line of

therapy

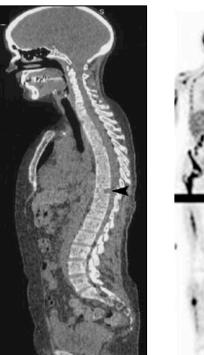
CRO Aviano (PN) - 9 ottobre 2024 Dimopoulos et al, annals of OncologY, VOLUME 32, ISSUE 3, P309-322, MARCH 01, 2021

PHARMACEUTICAL COMPANIES OF Johnson-Johnson

How Do (Should) We Use MRD in the Clinic Today?

Flow Cytometry	Next-Gen Sequencing	Imaging
 Defined: absence of clonal plasma cells in bone marrow aspirate using next-gen flow cytometry 	 Defined: absence of clonal plasma cells in BM aspirate with < 2 identical DNA sequence reads 	 Defined: disappearance of areas of tracer uptake at baseline PET/CT or decrease to < normal surrounding tissue
 Sensitivity: 10⁻⁴ to 10⁻⁶ 	 Sensitivity: 10⁻⁴ to 10⁻⁶ 	Sensitivity: high (?)
 Need for specialized, validated equipment 	 Sent to lab for evaluation (clonoSEQ) 	 Can be used as monitoring along with other assays
 ClonoSEQ FDA approve mveloma 	ed for MRD testing in acute	lymphoblastic leukemia or

 BUT there are currently no data on altering length of induction therapy, need for ASCT and/or consolidation, or maintenance based on MRD results



Diagnostic Imaging in MM

- » Low-dose whole-body CT (LDWBCT) or MRI recommended for diagnosis and monitoring bone damage
- » ≥ 1 site of osteolytic bone destruction (≥ 5 mm) seen on CT (including LDWBCT) or PET/CT indicative of active myeloma
- » Absence of bone disease

Multiple myeloma: Every year a new standard?

MM

Both criteria must be met:

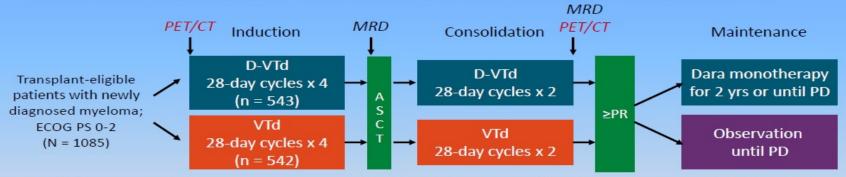
- Clonal bone marrow plasma cells ≥ 10% or biopsy-proven bony or extramedullary plasmacytoma
- · Any one or more of the following myeloma-defining events:
 - Evidence of end-organ damage that can be attributed to the underlying plasma cell proliferative disorder, specifically
 - Hypercalcemia: serum calcium > 0.25 mmol/L (>1 mg/dL) higher than the upper limit of normal or >2.75 mmol/L (>11 mg/dL)
 - Renal insufficiency: creatinine clearance < 40 mL/min or serum creatinine > 177 µmol/ L (>2 mg/dL)
 - Anemia: hemoglobin value of >2 g/dL below the lower limit of normal or a hemoglobin value < 10 g/dL</p>
 - Bone lesions: one or more osteolytic lesions on skeletal radiography, computerized tomography (CT), or positron emission tomography–CT (PET-CT)
 - Clonal bone marrow plasma cell percentage ≥ 60%
 - \circ Involved:uninvolved serum free light chain (FLC) ratio \geq 100 (involved FLC level must be \geq 100 mg/L)
 - >1 focal lesions on magnetic resonance imaging (MRI) studies (at least 5 mm in size)

How to cite this article: Rajkumar SV. Multiple myeloma: Every year a new standard? *Hematological Oncology*. 2019;37(S1):62–65. https://doi.org/10.1002/hon.2586

FORTE Premaintenance Analysis: Background

- Current standard of care for newly diagnosed MM defined as induction with a triplet regimen including a PI and an IMiD, typically VRd, followed by ACST ± consolidation and maintenance therapy
- Several regimens evaluated as pretransplant induction for newly diagnosed MM

− ≥ VGPR post transplant: KRd, 96%^[1]; VTD, 60%^[2]; VRd, 58%^[3]


- Current study compared safety, efficacy of KRd induction—ASCT—KRd consolidation vs 12 cycles of KRd vs KCd induction—ASCT—KCd consolidation
 - Interim analysis: \geq VGPR postinduction, KCd vs KRd: 61% vs 74% (P = .01)^[4]
 - Current analysis reports data from follow-up through post consolidation^[5]

1. Jakubowiak. EHA 2015. Abstr S787. 2. Rosiñol. Blood. 2012;120:1589. 3. Roussel. J Clin Oncol. 2014;32:2712. 4. Gay. ASCO 2017. Abstr 8003. 5. Gay. ASH 2018. Abstr 121.

CASSIOPEIA Phase III Trial

CASSIOPEIA showed significantly higher rates of MRD negativity with D-VTd, and longer PFS^[1]



- CASSIOPET companion study conducted in 268 patients from CASSIOPEIA (median f/u: 29.2 mos)^[2]
- PET/CT images interpreted by blinded independent team of nuclear medicine physicians using IMAGYS platform
 - Baseline assessments: BM diffuse uptake, bone focal lesions, EMD, PMD, most-intense FDG uptake, SUV_{max}
 - Responses defined by Deauville score of most intense lesion at Day 100
 - CR: lesion uptake < MBP uCR: lesion uptake between MPB and liver

1. Moreau. Lancet. 2019;394:29 2. Moreau. ASH 2019. Abstr 692.

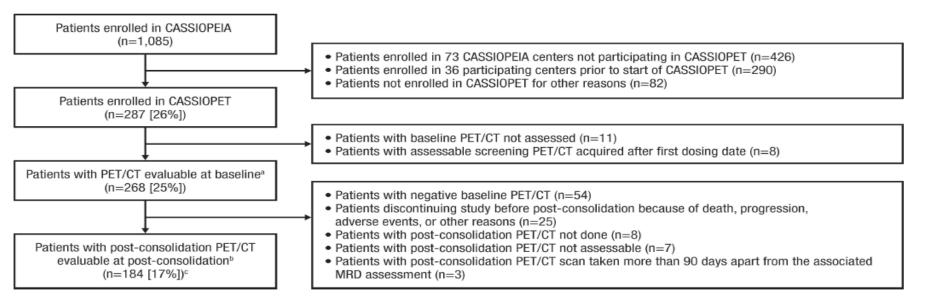
LETTER TO THE EDITOR

Figure 2. Progression-free survival outcomes by baseline positron emission tomography/computed tomography status in CASSIOPET. (A) Progression-free survival (PFS) for baseline positron emission tomography (PET)-negative patients *versus* PET-positive patients and (B) PFS for baseline PET-negative patients *versus* PET-positive patients by treatment group. Baseline PET assessments were performed prior to the first dose of study drug, and PFS was based on time from first randomization. CI: confidence interval; D-VTd: daratumumab plus bortezomib/thalidomide/dexamethasone; HR: hazard ratio; NE: not estimable; VTd: bortezomib/thalidomide/dexamethasone. ^aBased on a log-rank test.

 Table 1.
 Univariable and multivariable analyses of the prognostic value of baseline positron emission tomography (PET) characteristics

 on progression-free survival based on all patients with PET measurements at baseline (54/268 progression-free survival events).

Baseline characteristics	PFS events (n/N)	Univariable	-	Analysis ac treatment gro	oup and r-ISS	for treatment gr baseline PET/C	able analysis adjusted ent group, r-ISS, and all PET/CT characteristics CI) P value		
DET		HR (95% CI)	<i>P</i> value	HR (95% CI)	<i>P</i> value	HR (95% CI)	<i>P</i> value		
PET status									
Positive	48/214	1.00	0.037	1.00	0.039	1.00	0.372		
Negative	6/54	0.42 (0.18-0.97)		0.41 (0.17-0.95)		0.55 (0.15-2.04)			
Presence of FL									
No	12/88	1.00	0.047	1.00	0.051	1.00	0.753		
Yes	42/180	1.90 (1.00-3.60)		1.90 (1.00-3.62)		0.84 (0.29-2.44)			
Presence of diffuse BM infiltration ^a No Yes	24/139 30/129	1.00 1.40 (0.82-2.39)	0.220	1.00 1.39 (0.81-2.39)	0.234	1.00 1.03 (0.54-1.96)	0.922		
Presence of PMD No Yes	36/221 18/47	1.00 2.81 (1.59-4.98)	<0.001	1.00 3.82 (2.11-6.92)	<0.0001	1.00 3.16 (1.60-6.28)	0.001		
Presence of EMD No Yes	46/247 8/21	1.00 2.21 (1.04-4.69)	0.034	1.00 2.68 (1.24-5.77)	0.012	1.00 2.32 (1.04-5.19)	0.041		
FL hottest SUV		1.03 (1.00-1.06)	0.043	1.06 (1.02-1.10)	0.002	0.96 (0.85-1.08)	0.479		
Bone SUV		1.04 (1.01-1.07)	0.021	1.06 (1.03-1.10)	<0.001	1.07 (0.96-1.19)	0.223		
LDH ≺Upper limit ≥Upper limit	24/155 28/103	1.00 1.92 (1.11-3.31)	0.017	d d		_			
Cytogenetic risk Standard High	41/219 13/49	1.00 1.56 (0.84-2.92)	0.158	d	—		—		
Serum β ₂ microglobulin <3.5 mg/L 3.5-5.4 mg/L >5.4 mg/L	27/167 13/62 14/39	1.00 1.43 (0.74-2.78) 2.68 (1.40-5.12)	0.009	d d	_		_		
ISS stage I II III	18/118 22/111 14/39	1.00 1.34 (0.72-2.50) 2.80 (1.39-5.65)	0.010	d	_		_		


BM: bone marrow; CI: confidence interval; EMD: extramedullary disease; FL: focal lesion; HR: hazard ratio; ISS: IMWG International Staging System; IMWG: International Myeloma Working Group; LDH: lactate dehydrogenase; PET: positron emission tomography; PFS: progressionfree survival; PMD: paramedullary disease; r-ISS: IMWG revised International Staging System; SUV_{max}: maximum standardized uptake value. 'Diffuse BM infiltration is considered to be present if visual analysis (Deauville scale) of BM uptake indicates the residual uptake to be > liver activity (4) or >> liver activity (5); otherwise, the diffuse BM infiltration is considered to be absent. ^bImputed to 1 for patients with no presence of FL. ^eHighest result among FL hottest SUV_{max}, BM uptake SUV_{max}, PMD hottest SUV_{max}. Imputed FL hottest SUV_{max} to 1 for patients with no presence of FL. ^dCovariates not included in the adjusted analysis.

LETTER TO THE EDITOR

Prognostic value of positron emission tomography/computed tomography in transplant-eligible newly diagnosed multiple myeloma patients from CASSIOPEIA: the CASSIOPET study

Figure 1. STROBE flow chart for CASSIOPET. ASCT: autologous stem cell transplant; MRD: minimal residual disease; PET: positron emission tomography; PET/CT: positron emission tomography/computed tomography. ^aBaseline PET-evaluable patients were defined as patients with assessable baseline PET acquired before the first dosing date. ^bPost-consolidation PET-evaluable patients included patients with assessable day 100 post-ASCT PET data and positive baseline PET but excluded patients with a date of PET/CT post-consolidation >±90 days from the date of the day 100 MRD assessment. ^c13 patients had unevaluable baseline PET/CT but evaluable post-consolidation PET/CT and were included in the post-consolidation analysis.

Haematologica | 108 February 2023

EXPERT REVIEW OF HEMATOLOGY 🕒 935

			Staging (prognostic) criteria			Median OS (months) or 5-year survival rate (%) based on stages or risk stratification			
Staging System or Stratification model	Year	Tumor mass (clinical) and/or other parameters	Tumor mass/ biological (mixed)	Biological	I	ш	ш	IV	Reference
DSS	1975	Bone lesions, hemoglobin, calcium, M protein	-	-	191ª -	54ª 11 ^b	34ª 5 ^b	-	[1]
ISS DSS PLUS	2005 2006	albumin DSS+MRI	B2-microglobulin PET/CT scan	-	62	45	29	2	[2] [5]
R-ISS	2015	albumin	B2-micloglobulin, LDH	del(17p), and/or t(4;14) and/or t (14;16)	82% Not reached	62% 83	40% 43	-	[7]
SKY-RISS	2020	albumin	B2-microgobulin, LDH	del(17p), t(4;14) and 1q+	88 ^c	66°	26 ^c	-	[14]
R-ISS+PET/CT	2021	albumin	B2-microglobulin, LDH PET/CT scan	Del(17), t(4;14) and t(14;16)	97% ^d	90% ^d	75% ^d	50% ^d	[12]
Modified Risk Staging	2021	Age, albumin, calcium, glomerular filtration rate, hemoglobin	B2-microglobulin	-	86%	62%	49%	-	[17]
Mayo Additive Staging system (MASS)	2022	albumin	B2-micloglobulin, LDH	High-risk IgH translocations, 1q gain/amplification and chromosome 17 abnormalities	132	84	54	-	[13]
R2-ISS (2 nd revision ISS)	2022	albumin	LDH	del(17p), and/or t(4;14) and/or t (14;16)	Not reached	109	69	38	[11]
Prognostic stratification model (IAC-50)	2022	albumin	B2-microglobulin	46-gene expression signature	n/a ^e	n/a ^e	n/a ^e	n/a°	[15]

Table 1. Staging and risk stratification systems for MM with their prognostic factors and implications for survival.

^aExcluding patients with abnormal renal function; ^bpatients with abnormal kidney function; ^c3-year survival rate; ^d2-year survival rate; ^eoverall survival was predicted at 6, 12, 18, 24, 48, and 60 months using time-dependent areas under the curve (AUCs).

International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma

Shaji Kumar, Bru no Paiva, Kenneth C Anderson, Brian Durie, Ola Landgren, Philippe Moreau, Nikhil Munshi, Sagar Lonial, Joan Bladé, Maria-Victoria Mateos, Meletios Dimopoulos, Efstathios Kastritis, Mario Boccadoro, Robert Orlowski, Hartmut Goldschmidt, Andrew Spencer, Jian Hou, Wee Joo Chng, SaadZ Usmani, Elena Zamagni, Kazuyuki Shimizu, Sundar Jagannath, Hans E Johnsen, Evangelos Terpos, Anthony Reiman, Robert A Kyle, Pieter Sonneveld, Paul G Richardson, Philip McCarthy, Heinz Ludwig, Wenming Chen, Michele Cavo, Jean-Luc Harousseau, Suzanne Lentzsch, Jens Hillengass, Antonio Palumbo, Alberto Orfao, S Vincent Rajkumar, Jesus San Miguel, Herve Avet-Loiseau

Treatment of multiple myeloma has substantially changed over the past decade with the introduction of several classes of new effective drugs that have greatly improved the rates and depth of response. Response criteria in multiple myeloma were developed to use serum and urine assessment of monoclonal proteins and bone marrow assessment (which is relatively insensitive). Given the high rates of complete response seen in patients with multiple myeloma with new treatment approaches, new response categories need to be defined that can identify responses that are deeper than those conventionally defined as complete response. Recent attempts have focused on the identification of residual tumour cells in the bone marrow using flow cytometry or gene sequencing. Furthermore, sensitive imaging techniques can be used to detect the presence of residual disease outside of the bone marrow. Combining these new methods, the International Myeloma Working Group has defined new response categories of minimal residual disease negativity, with or without imaging-based absence of extramedullary disease, to allow uniform reporting within and outside clinical trials. In this Review, we clarify several aspects of disease response assessment, along with endpoints for clinical trials, and highlight future directions for disease response assessments.

Multiple myeloma: EHA-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up †

M. A. Dimopoulos¹, P. Moreau², E. Terpos¹, M. V. Mateos³, S. Zweegman⁴, G. Cook⁵, M. Delforge⁶, R. Hájek⁷, F. Schjesvold^{8,9}, M. Cavo¹⁰, H. Goldschmidt¹¹, T. Facon¹², H. Einsele¹³, M. Boccadoro¹⁴, J. San-Miguel¹⁵, P. Sonneveld¹⁶ & U. Mey¹⁷, on behalf of the EHA Guidelines Committee^{*} and ESMO Guidelines Committee^{*}

	Tool	Diagnosis	At response	At follow-up	At relapse
Blood	Blood count and blood smear	Obligatory	Obligatory	Obligatory	Obligatory
	Serum electrophoresis and IF	Obligatory	Obligatory (IF for CR confirmation)	Obligatory (IF for CR patients)	Obligatory
	Serum-free light chain	Obligatory	Obligatory to confirm sCR	Obligatory	Obligatory
	Serum immunoglobulin levels	Obligatory	Obligatory	Obligatory	Obligatory
	Renal and liver function tests	Obligatory	Obligatory	Obligatory	Obligatory
	Calcium	Obligatory	Obligatory	Obligatory	Obligatory
	Lactate dehydrogenase	Obligatory	Obligatory	Obligatory	Obligatory
	Albumin, β_{2m} Flow cytometry	Obligatory Optional	Not required Not required	Optional Not required	Obligatory Optional
Urine	Urine sample from 24 h urine collection to check for proteinuria and light-chain proteinuria	Obligatory	Obligatory	Obligatory	Obligatory
	Urine electrophoresis and IF electrophoresis	Obligatory	Obligatory (IF for CR confirmation)	Obligatory (IF for CR patients)	Obligatory
Bone marrow	BM cytology and biopsy to confirm plasmacytosis and monoclonality NGF or NGS to detect	Obligatory	Obligatory to confirm CR or for non-secretory MM Obligatory to confirm	Not required Every 12 months in	Optional (obligatory for non-secretory disease) Optional
	clonal plasma cells		MRD negativity in CR or sCR patients	CR and/or MRD-negative patients ^a	
	Cytogenetics: karyotype and FISH for detection of del17p, t(4;14), t(14;16), ampl 1q/gain 1q, t(11;14)	Obligatory	Not required	Not required	Obligatory for del17p, ampl 1q/ gain 1q and t(11;14)
	Advanced techniques: GEP, NGS	For clinical trials use only	For clinical trials use only	For clinical trials use only	For clinical trials use only
Imaging	WBLD-CT	Obligatory	Not required	When symptomatic (or CT of the	Obligatory
	PET-CT	Optional (it may be carried out instead of WBLD-CT if available)	Obligatory to confirm imaging MRD	symptomatic area) Every 12 months in bone marrow MRD-negative	Optional
	Whole-body MRI	Obligatory in WBLD-CT-negative cases and if PET-CT is not carried out	Not required	patients ^b When symptomatic	Optional

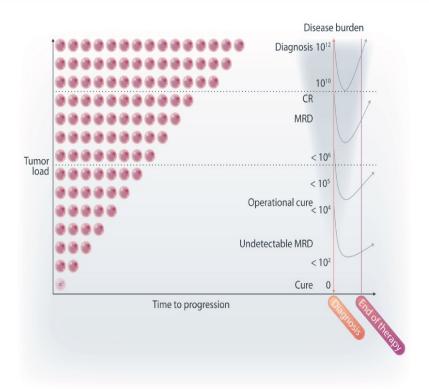


Figure 1. Correlation of depth of response and survival. CR: complete remission; MRD: measurable residual disease.

REVIEW ARTICLE

Functional cure and long-term survival in multiple myeloma: how to challenge the previously impossible

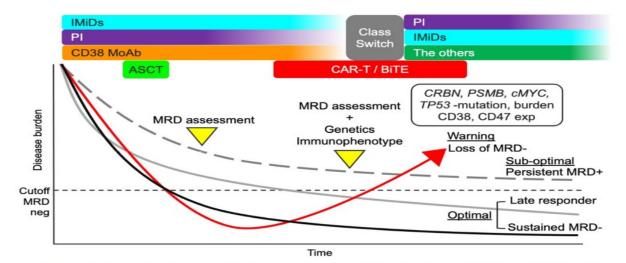
Monika Engelhardt," K. Martin Kortüm,² Hartmut Goldschmidt³ and Maximilian Merz⁴⁺

¹Department of Medicine I Hematology and Oncology, Medical Center University of Freiburg, Faculty of Medicine, Comprehensive Cancer Center Freiburg (CCCF), Freiburg; ²Department of Medicine II, University Hospital of Würzburg, Würzburg; ³University Hospital Heidelberg and the National Center for Tumor Diseases, Heidelberg and ⁴Department of Hematology, Cell Therapy, Infectiology and Hemostaseology, University Hospital Leipzig, Leipzig, Germany

*ME and MM contributed equally.

Correspondence: M. Engelhardt monika.engelhardt@uniklinik-freiburg.de

M. Merz maximilian.merz@medizin.uni-leipzig.de


Received:	June 22, 2023.
Accepted:	February 6, 2024.
Early view:	February 15, 2024.

https://doi.org/10.3324/haematol.2023.283058

©2024 Ferrata Storti Foundation Published under a CC BY-NC license © 00

Review Treatment Strategy for Multiple Myeloma to Improve Immunological Environment and Maintain MRD Negativity

Kazuhito Suzuki 1,2,*(), Kaichi Nishiwaki 1,2 and Shingo Yano 2

- Department of Internal Medicine, Division of Clinical Oncology and Henatology. The Jikei University Kashiwa Hospital, Tokyo 277-8567, Japan; nishiwaki@jikei.ac.jp
 Department of Internal Medicine, Division of Clinical Oncology and Henatology. The Jikei University Schr.
- of Medicine, Tokyo 105-8461, Japan; yano@jikei.ac.jp
- * Correspondence: kaz-suzuki@jikei.ac.jp

Figure 3. Treatment strategy considering MRD status. A total therapy approach combining IMiDs, PIs, anti-CD38 MoAb, and ASCT may be suitable for MM patients considering the efficacy against myeloma cells and improved microenvironment. MRD status after the total therapy approach can be useful in further treatment decisions. If the MRD status is negative, the current treatment should continue (optimal). However, if the MRD status is positive, the genetic and immunophenotypic characteristics of residual myeloma cells should be analyzed to optimize treatment. Loss of MRD negativity can lead to aggressive recurrence (warning). The clinical outcome of persistent MRD positivity is better than that of loss of MRD negativity (sub-optimal). Repeated MRD assessment may be necessary for patients with persistent MRD positivity to identify late responders and detect early-phase recurrence. MM, multiple myeloma; MRD, minimal residual disease; IMiDs, immunomodulatory drugs; PIs, proteasome inhibitors; MoAbs, monoclonal antibodies; ASCT, autologous stem cell transplantation; CAR-T, chimeric antigen receptor T cell; CRBN, cereblon; PSMB5, proteasome 20S subunit beta 5; and exp, expression.

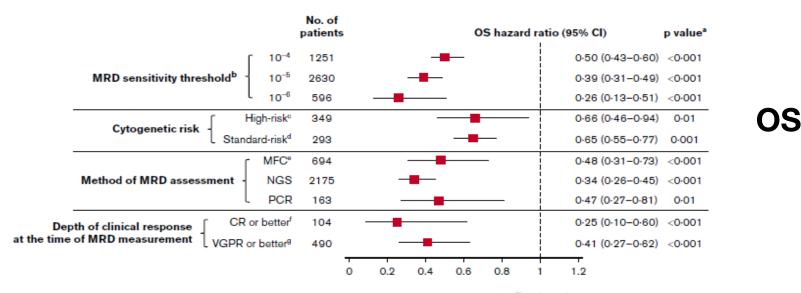
Cancers 2021, 13, 4867

A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma

Nikhil C. Munshi,^{1,2} Herve Avet-Loiseau,³ Kenneth C. Anderson,¹ Paola Neri,⁴ Bruno Paiva,⁵ Mehmet Samur,¹ Meletios Dimopoulos,⁶ Margarita Kulakova,⁷ Annette Lam,⁸ Mahmoud Hashim,⁷ Jianming He,⁸ Bart Heeg,⁷ Jon Ukropec,⁹ Jessica Vermeulen,⁹ Sarah Cote,⁸ and Nizar Bahlis⁴

		No. of patients	PFS hazard	ratio (95% CI)	p valueª
	r 10	0-4 2127		0-38 (0-32-0-45)	<0.001
	MRD sensitivity threshold ^b - 10	0 ⁻⁵ 5361		0.31 (0.27-0.36)	<0.001
	L 10	0 ⁻⁶ 1469		0.22 (0.16-0.29)	<0.001
	Cytogenetic risk	k° 495		0-45 (0-36-0-58)	<0.001
	Standard-ris	sk ^d 583		0-40 (0-26-0-60)	0.001
	r MFC	° 2281		0-37 (0-30-0-46)	<0.001
	Method of MRD assessment	F 661		0.22 (0.14-0.33)	<0.001
	NG	S 3974	-	0.26 (0.22-0.31)	<0.001
	L PC	R 321		0.27 (0.19-0.37)	<0.001
	th of clinical response CR or bett	er ^f 815		0-38 (0-29-0-50)	<0.001
at the time of MRD measurement	of MRD measurement 2 VGPR or bett	er ^g 959		0.31 (0.23-0.43)	<0.001
Measurement of MRD s pre-maintenance and at 12 mo after start of mainten		ce ^h 979		0.34 (0.23-0.51)	<0.001
		nce ⁱ 851		0-21 (0-15-0-29)	<0.001
			0 0.2 0.4 0.6 0.8	1 1.2	

blood advances: 8 DECEMBER 2020 · VOLUME 4, NUMBER 23


PFS

Α

A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma

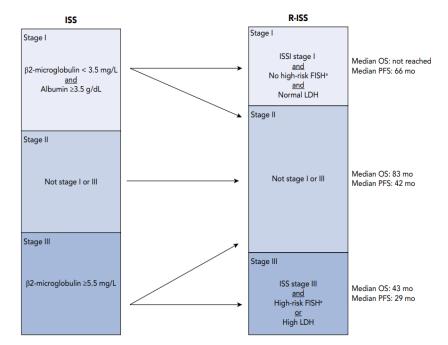
Nikhil C. Munshi,^{1,2} Herve Avet-Loiseau,³ Kenneth C. Anderson,¹ Paola Neri,⁴ Bruno Paiva,⁵ Mehmet Samur,¹ Meletios Dimopoulos,⁶ Margarita Kulakova,⁷ Annette Lam,⁸ Mahmoud Hashim,⁷ Jianming He,⁸ Bart Heeg,⁷ Jon Ukropec,⁹ Jessica Vermeulen,⁹ Sarah Cote,⁸ and Nizar Bahlis⁴

Solood advances: 8 December 2020 · VOLUME 4, NUMBER 23

в

Table 2 Metabolic response and MRD assessment by EDG-PET/CT

METABOLIC RESPONSE ASSESSMENT BY PET_CT


Reference	Study design	Number of patients	Treatment	Time of assessment	Parameter	End point
Bartel et al. [37]	Prospective	239	CHT + novel agents + double ASCT	Pre-ASCT	Normalization vs. persistence of FDG uptake	PFS: 63% vs. 89% at 30 months from first ASCT
Dimitrakopoulou- Strauss et al. [41]	Prospective	19	СНТ	Post first CHT cycle	SUV > 4	PFS at 18 months: worse
Zamagni et al. [9]	Prospective	192	TD + double ASCT	Post TD	SUV > 4·2 vs. ≤4·2	$\frac{PFS}{(p = .007)}$ at 4 years: 44% vs. 69%
				Post double ASCT	SUV > 4·2 vs. ≤4·2	PFS at 4 years: 47% vs. 32% (p = .02)
						OS at 4 years: 79% vs. 66% (p = .02)
Usmani et al. [32]	Prospective	302	CHT + novel agents + double ASCT	Post treatment day 7	FLs 0 vs. 1–3 vs. >3	<u>PFS</u> : 84% vs. 78% vs. 56% (p < .0003)
						OS: 87% vs. 82% vs. 63% (p < .0001)
Beksac et al. [38]	Retrospective	139	CHT + ASCT	After ASCT	SUV > 4.2 SUV > 3.35	<u>PFS</u> at 3 years: worse ($p = .05$) OS at 3 years: worse ($p = .037$)
Patriarca et al. [39]	Retrospective	54	Allo-SCT	6 months after Allo-SCT	PET/CT positive vs. negative	PFS at 2 years from Allo-SCT: 259 vs. 51% (p = .03) OS at 2 years from Allo-SCT: 81
Moreau et al. [37]	Prospective	134	VRD ± ASCT,	After VRD	PET/CT positive vs. negative	vs. 47 (p = .001) PFS at 30 months: 60% vs. 79%
						(p = .04)
				Prior to maintenance	PET/CT positive vs. negative	PFS at 30 months: 54.4% vs. 75.9% (p = .0004)
Zamagni et al. [42]	Retrospective	189	CHT, novel agents ± ASCT	3 months after therapy	PET/CT positive vs. negative	$\frac{\text{PFS: median 38 vs. 52 months,}}{(p = .0319)}$
						OS at 5 years: 71% vs. 90% (p = .00014)
Korde et al. [29]	Prospective	45	CRD	After CRD	PET/CT positive/partial vs. negative/decreased	PFS at 18 months: 82% vs. 89% (p = ns)

CHT: chemotherapy; ASCT: autologous stem cell transplantation; FDG: ¹⁸Fluorine-fluoro-deoxyglucose; PFS: progression free survival; SUV: standardized uptake value; TD: thalidomide-dexamethasone; OS: overall survival; FLs: focal lesions; PET: positron emission tomography; CT: computed tomography; TTP: time to progression; allo-SCT: allogenic stem cell transplantation; MTV: metabolic tumor volume; VRD: bortezomib-lenalidomide-dexamethasone; PTs: patients; CRD: carfilzomiblenalidomide-dexamethasone.

> EXPERT REVIEW OF HEMATOLOGY, 2016 VOL. 9, NO. 9, 831–837 http://dx.doi.org/10.1080/17474086.2016.1212654

R-ISS is the currently validated score to define the high risk MM patient

Costa L & Usmani S. J Natl Compr Canc Netw 2020;18(12):1730–1737

Validated genetic abnormalities associated with worse prognosis

- **u** t(4;14)
- **t**(14;16)
- del(17p)

All together account for approximately 25% of patients with newly diagnosed MM (NDMM)

The revised ISS (R-ISS) acknowledges the impact of t(4;14), t(14;16), and del(17p) and the presence of elevated lactate dehydrogenase level on MM prognosis, defining a subset of _{Costa L & Usmani S. J Natl Compr Canc Netw 2020;18(12):1730-1737} approximately 15% of patients with R-ISS stage III disease and

Role of minimal residual disease assessment in multiple myeloma

by Raphael Szalat, Kenneth Anderson, and Nikhil Munshi

Received: November 10, 2023. Accepted: January 31, 2024.

Citation: Raphael Szalat, Kenneth Anderson, and Nikhil Munshi. Role of minimal residual disease assessment in multiple myeloma. Haematologica. 2024 Feb 8. doi: 10.3324/haematol.2023.284662 [Epub ahead of print]

Whole body imaging methods	PETCT	Whole Body MRI
Bone marrow evaluation	No	No
Standardization	Yes	Yes
Require evaluation at diagnosis	Not required* Negative in ~10% of MM patients	Not required*
Cost	++	++
Applicability	++	+
Sensitivity	++	+++

Received: November 10, 2023. Accepted: January 31, 2024.

Review Minimal Residual Disease in Multiple Myeloma: Past, Present, and Future

Alejandro Medina-Herrera ^(D), María Eugenia Sarasquete *, Cristina Jiménez ^(D), Noemí Puig and Ramón García-Sanz ^(D)

Study	Sensitivity (Median)	Treatment Algorithm	MRDneg Rates
ASCT-eligible Myeloma XI (NCT01554852) [55]	$4 imes 10^{-5}$	ASCT + R vs. no maintenance	65.6% 34.4%
GEM2012MENOS65 (NCT01916252) [52,53]	$3 imes 10^{-6}$	VRd + ASCT + VRd	50.2%
CASSIOPEIA	10 ⁻⁵	Part 1: Dara – VTd + ASCT + Dara – VTd vs.	64%
(NCT02541383) [57]		VTd + ASCT + VTd	44%
	10^{-5}	Part 2: Maintenance with Dara vs.	66%
		observation	55.2%
EMN02/HO95	10^5	Consolidation with VRd vs.	9.8%
(NCT01208766) [54]		No consolidation	8.2%

Review

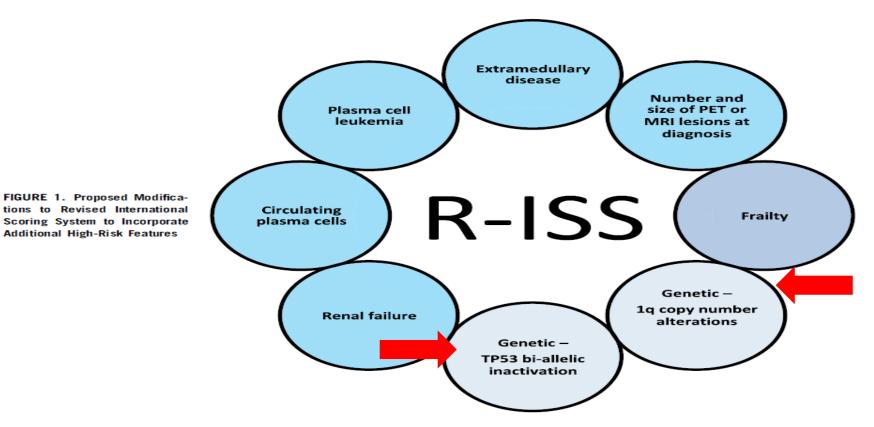
Minimal Residual Disease in Multiple Myeloma: Past, Present, and Future

Alejandro Medina-Herrera ^(D), María Eugenia Sarasquete *, Cristina Jiménez ^(D), Noemí Puig and Ramón García-Sanz ^(D)

Study	Sensitivity (Median)	Treatment Algorithm	Mrdneg Rates
ASCT-eligible IFM2009 (NCT01191060) [89]	10^{-6}	VRd, 8 cycles vs. VRd + ASCT	20% 30%
CASSIOPEIA (NCT02541383) [57]	10^{-5} 10^{-6}	Part 1: Dara – VTd + ASCT + Dara – VTd vs. VTd + ASCT + VTd Part 2: Maintenance with Dara vs. observation	57% 37% 49.5% 36.7%
GRIFFIN (NCT02874742) [96] ASCT-non-eligible ALCYONE (NCT02195479) [97,98]	10^{-5} 10^{-5}	Dara – VRd + ASCT + Dara – VRd vs. VRd + ASCT + VRd Dara – VMP vs. VMP	51% 20.4% 22% 6%
MAIA (NCT02252172) [98,99]	10 ⁻⁵	Dara – Rd vs. Rd	24.2% 7.3%
Relapsed/refractory CASTOR (NCT02136134) [100]	10^{-5}	Dara – Vd vs. Vd	15% 1.6%
POLLUX (NCT02076009) [101]	10 ⁻⁵	Dara — Rd vs. Rd	33.2% 6.7%
IKEMA (NCT03275285) [102]	10 ⁻⁵	Isa–Kd vs. Kd	29.6% 13%

NGS

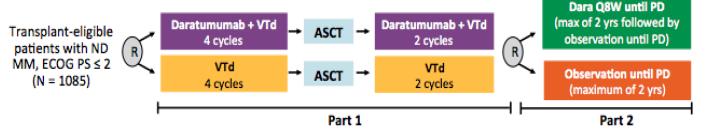
Table 2.

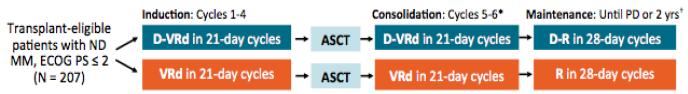

Primary Molecular Cytogenetic Classification of Multiple Myeloma

Subtype	Gene(s)/chromosomes affected	Approximate Percentage of myeloma patients
Hyperdiploid multiple myeloma	Recurrent trisomies involving odd-numbered chromosomes with the exception of chromosomes 1, 13, and 21	45
IgH translocated multiple myeloma		40
t(11;14) (q13;q32)	CCND1 (cyclin D1)	20
t(6;14)(p21;q32)	CCND3 (cyclin D3)	5
t(4;14) (p16;q32)	NSD2	10
t(14;16) (q32;q23)	C-MAF	4
t(14;20) (q32;q11)	MAFB	<1
Other IgH translocations, other cytogenetic abnormalities, or normal		5

Modified from Kumar S et al. Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood 2012; 119:2100. © American Society of Hematology.

* Requires absence of an immunoglobulin heavy chain translocation. If an immunoglobulin heavy chain translocation is present, classification will be based on that abnormality.





Clinical Trials With Quad Therapy in Newly Diagnosed MM

CASSIOPEIA: open-label, randomized phase III trial^[1]

GRIFFIN: open-label, randomized phase II trial^[2]

*Consolidation began 60-100 days after ASCT. 'Patients completing maintenance were permitted to continue single-agent len.

1. Moreau. Lancet. 2019;394:29. 2. Voorhees. Blood. 2020;[Epub].

Evaluation of Sustained Minimal Residual Disease Negativity With Daratumumab-Combination Regimens in Relapsed and/or Refractory Multiple Myeloma: Analysis of POLLUX and CASTOR

Hervé Avet-Loiseau, MD¹; Jesus San-Miguel, MD²; Tineke Casneuf, PhD³; Shinsuke Iida, MD⁴; Sagar Lonial, MD⁵; Saad Z. Usmani, MD⁶; Andrew Spencer, MD⁷; Philippe Moreau, MD⁸; Torben Plesner, MD⁹; Katja Weisel, MD¹⁰; Jon Ukropec, PhD¹¹; Christopher Chiu, PhD¹²; Sonali Trivedi, PhD¹²; Himal Amin, BS¹³; Maria Krevvata, PhD¹²; Priya Ramaswami, MSPH¹⁴; Xiang Qin, MS¹²; Mia Qi, PhD¹³; Steven Sun, PhD¹³; Ming Qi, MD¹²; Rachel Kobos, MD¹³; and Nizar J. Bahlis, MD¹⁵

PURPOSE In relapsed and/or refractory multiple myeloma, daratumumab reduced the risk of progression or death by > 60% in POLLUX (daratumumab/lenalidomide/dexamethasone [D-Rd]) and CASTOR (daratumumab/bortezomib/dexamethasone [D-Vd]). Minimal residual disease (MRD) is a sensitive measure of disease control. Sustained MRD negativity and outcomes were evaluated in these studies.

METHODS MRD was assessed via next-generation sequencing (10^{-5}) at suspected complete response (CR), 3 and 6 months following confirmed CR (POLLUX), 6 and 12 months following the first dose (CASTOR), and every 12 months post-CR in both studies. Sustained MRD negativity (\geq 6 or \geq 12 months) was evaluated in the intention-to-treat (ITT) and \geq CR populations.

RESULTS The median follow-up was 54.8 months in POLLUX and 50.2 months in CASTOR. In the ITT population, MRD-negativity rates were 32.5% versus 6.7% for D-Rd versus lenalidomide and dexamethasone (Rd) and 15.1% versus 1.6% for D-Vd versus bortezomib and dexamethasone (Vd; both P < .0001). Higher MRD negativity rates were achieved in \ge CR patients in POLLUX (D-Rd, 57.4%; Rd, 29.2%; P = .0001) and CASTOR (D-Vd, 52.8%; Vd, 17.4%; P = .0035). More patients in the ITT population achieved sustained MRD negativity \ge 6 months with D-Rd versus Rd (20.3% v2.1%; P < .0001) and D-Vd versus Vd (10.4% v1.2%; P < .0001), and ≥ 12 months with D-Rd versus Rd (16.1% v1.4%; P < .0001) and D-Vd versus Vd (6.8% v 0%). Similar results for sustained MRD negativity were observed among \ge CR patients. More patients in the daratumumab-containing arms achieved MRD negativity and sustained MRD negativity, which were associated with prolonged progression-free survival.

CONCLUSION Daratumumab-based combinations induce higher rates of sustained MRD negativity versus standard of care, which are associated with durable remissions and prolonged clinical outcomes.

J Clin Oncol 39:1139-1149. © 2021 by American Society of Clinical Oncology

Creative Commence Attribution New Commercial Ne Derivatives 4.0 Linence COMO

original reports

Evaluation of Sustained Minimal Residual Disease Negativity With Daratumumab-Combination Regimens in Relapsed and/or Refractory Multiple Myeloma: Analysis of POLLUX and CASTOR

Hervé Avet-Loiseau, MD¹; Jesus San-Miguel, MD²; Tineke Casneuf, PhD³; Shinsuke Iida, MD⁴; Sagar Lonial, MD⁵; Saad Z. Usmani, MD⁶; Andrew Spencer, MD⁷; Philippe Moreau, MD⁸; Torben Plesner, MD⁹; Katja Weisel, MD¹⁰; Jon Ukropec, PhD¹¹; Christopher Chiu, PhD¹²; Sonali Trivedi, PhD¹²; Himal Amin, BS¹³; Maria Krevvata, PhD¹²; Priya Ramaswami, MSPH¹⁴; Xiang Qin, MS¹²; Mia Qi, PhD¹³; Steven Sun, PhD¹³; Ming Qi, MD¹²; Rachel Kobos, MD¹³; and Nizar J. Bahlis, MD¹⁵

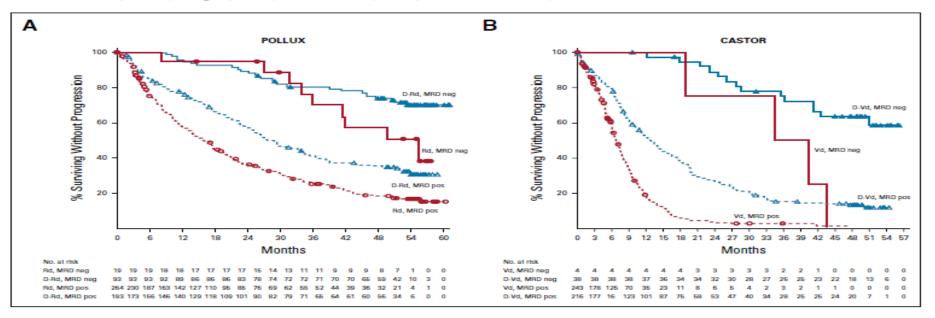


FIG 1. PFS based on MRD status (10⁻⁵) in POLLUX (A) and CASTOR (B). Shown are the results of the Kaplan-Meier estimates of PFS among patients in the ITT population based on the absence of MRD at a threshold of one tumor cell per 10⁶ white cells. Blue lines show regimens containing daratumumab; red lines show standard-of-care regimens. D-Rd, daratumumab plus lenalidomide and dexamethasone; D-Vd, daratumumab plus bortezomib and dexamethasone; ITT, intention-to-treat; MRD, minimal residual disease; PES, progression-free survival; Rd, lenalidomide and dexamethasone; Vd, bortezomib and dexamethasone.

COMPARISON OF DIFFERENT TECHNIQUES

Table 3. Comparison of different techniques to assess MRD in MM.

Parameter	NGF	ASO qPCR	NGS	PET/CT
Quantitative assessment	Yes	Yes	Yes	Yes
Applicability	~100%	60-70%	≥90%	75%
Baseline sample	Not mandatory	Mandatory	Mandatory	Not mandatory
Cost	Intermediate	High	High	High
Sensitivity	≥1 in 10 ⁵	≥1 in 10 ⁵	≥1 in 10 ⁵	Lesions ≥5 mm
Patchy BM infiltration and/or EMD	Impact	Impact	Impact	Not impact
Stand ardization	Ongoing	Yes	Ongoing	Ongoing
Prognostic value of MRD status	Improvements in PFS and OS			

NGF: next-generation-flow; ASO qPCR: allele specific oligonucleotide polymerase chain reaction; NGS: next generation sequencing; PET/CT: positron emission tomography/computerized tomography scanning.

EXPERT REVIEW OF HEMATOLOGY, 2016 VOL. 9, NO. 9, 831–837 http://dx.doi.org/10.1080/17474086.2016.1212654

» DEFINIZIONE DI MRD

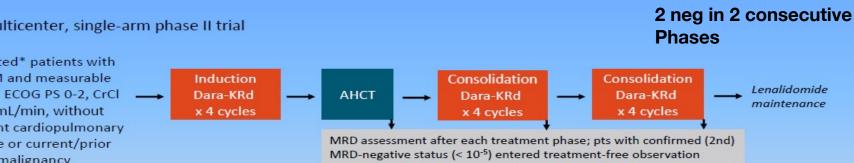
ABSTRACT

Precise assessment of response to therapy is of high importance in every phase of multiple myeloma (MM). In addition to the well-established role of monoclonal protein for clinical monitoring, several methods of minimal residual disease evaluation, both inside and outside the bone marrow (BM), are to date available. Next generation flow cytometry and sequencing are probably the best approaches at the BM level, being highly sensitive and uniformly applied. FDG PET/CT is the best imaging technique for evaluating and monitoring response to therapy outside the BM. Functional whole-body MRI techniques (DCE and DWI) seem promising for response evaluation and need further studies. Standardization of most of these techniques is in progress.

Minimal residual disease response-adapted therapy in newly diagnosed multiple myeloma (MASTER): final report of the multicentre, single-arm, phase 2 trial

Luciano J Costa, Saurabh Chhabra, Eva Medvedova, Bhagirathbhai R Dholaria, Timothy M Schmidt, Kelly N Godby, Rebecca Silbermann, Binod Dhakal, Susan Bal, Smith Giri, Anita D'Souza, Aric C Hall, Pamela Hardwick, James Omel, Robert F Cornell, Parameswaran Hari, Natalie S Callander

MASTER: Study Design

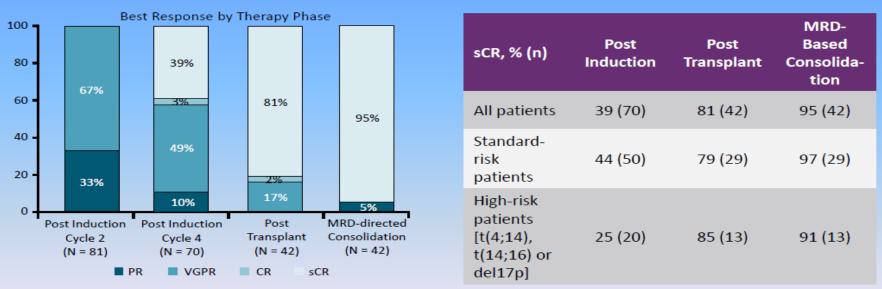

Multicenter, single-arm phase II trial

Untreated* patients with NDMM and measurable Consolidation Induction Consolidation Lenalidomide disease, ECOG PS 0-2, CrCl Dara-KRd Dara-KRd AHCT Dara-KRd maintenance ≥ 40 mL/min, without x 4 cycles x 4 cycles x 4 cvcles significant cardiopulmonary MRD assessment after each treatment phase; pts with confirmed (2nd) disease or current/prior MRD-negative status (< 10⁻⁵) entered treatment-free observation malignancy phase with MRD assessment at 24 and 72 wks after EOT. $(N = 81)^{\dagger}$

Dara-KRd dosing: daratumumab 16 mg/m² on Days 1,8,15,22 (Days 1,15 of Cycles 3-6; Day 1 Cycle > 6); carfilzomib 56 mg/m² Days 1,8,15; lenalidomide 25 mg Days 1-21; dexamethasone 40 mg PO Days 1,8,15,22. *1 VCD cycle permitted. *Planned recruitment N = 123.

- Primary endpoint: MRD-negative remission (< 10⁻⁵) on NGS assay in pts receiving induction, AHCT, and response-adapted consolidation
- Secondary endpoints: safety, imaging frequency plus remission, MRD status post-AHCT, IMWG response, loss of MRD negativity in pts with no maintenance therapy
- Exploratory endpoint: MRD-negative rates on NGS assay (threshold < 10⁻⁶)

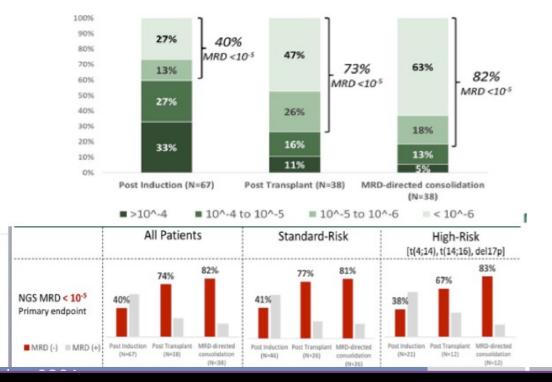
Costa, ASH 2019, Abstr 860,



MASTER: Best Response by Treatment Phase

 n = 27 (n= 19 standard risk, n = 7 high risk) achieved MRD-negative status and entered observation phase; no relapse or MRD positivity at median median follow-up of 4.9 mos

Costa. ASH 2019. Abstr 860.


Conclusions

- Use of Dara-KRd induction with AHCT and Dar-KRd consolidation was effective and tolerable in untreated patients with NDMM
 - 39% achieved sCR post induction and 95% at MRD-based consolidation
 - High level of response observed in both high-risk and standard-risk patients
 - Few patients discontinued for toxicity
- Investigators concluded that delivery of NGS MRD-based, response adapted therapy feasible in clinical setting
- Study ongoing

Costa. ASH 2019. Abstr 860.

- MRD trackable by NGS clonoSEQ[®] in 78/81 patients (96%)
- 100% of datapoints obtained in patients with trackable MRD

P Value

.004

.015

OR

2.53

2.11

FORTE Premaintenance Analysis: Response Rates

Response Rate	KCd– ASCT–KCd (n = 159)	KRd– ASCT–KRd (n = 158)	KRd x 12 cycles (n = 157)
After ASCT or 8 KRd cycles (ITT), %			
■ ≥ VGPR	66	81	85
 sCR 	15	23	30
 CR* 	9	11	4
VGPR	42	47	51
Premaintenance, %			
■ ≥ VGPR	76	89	87
 sCR 	32	44	43
 CR* 	15	16	18
 VGPR 	29	29	26
MRD negativity [†] premaintenance, %	42	58	54

*Confirmed or unconfirmed. [†]MRD assessed by 2nd generation with sensitivity of 10⁻⁵.

Gay F, et al. ASH 2018. Abstract 121.

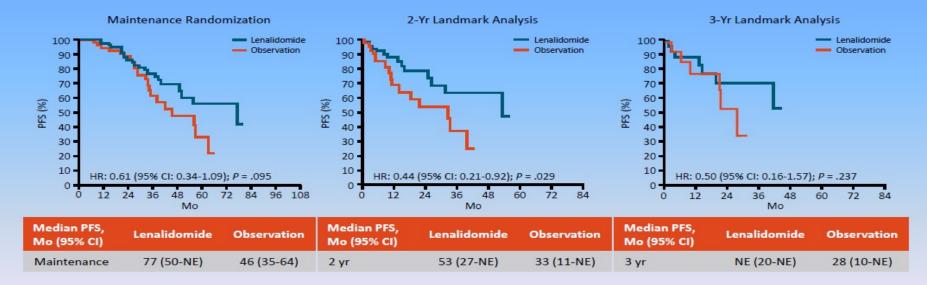
4 51	 KRd–ASCT–KRd vs KCd– ASCT–KCd 	1.65	.035
	KRd12 vs KCd–ASCT–KCd	1.69	.048
87 43 18 26	MRD negativity [†] • KRd–ASCT–KRd vs KCd– ASCT–KCd • KRd12 vs KCd–ASCT–KCd	2.02	.009
54 flow cytometry,	 Results replicated across evaluated 	s most subgro	oups
······			

Likelihood of

ASCT-KCd

> VGPR

sCR

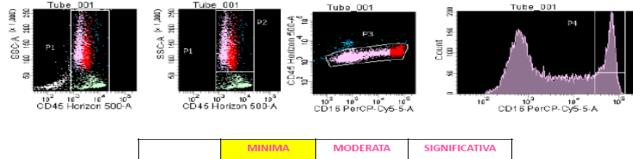

Premaintenance Response

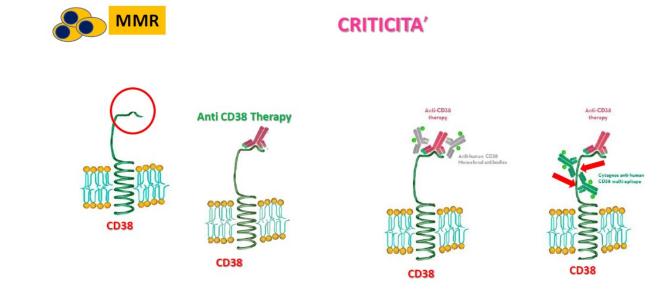
KRd–ASCT–KRd vs KCd–

KRd12 vs KCd–ASCT–KCd

Myeloma XI Trial: PFS by Sustained MRD Negativity and Yr of Treatment (Landmark Analyses)

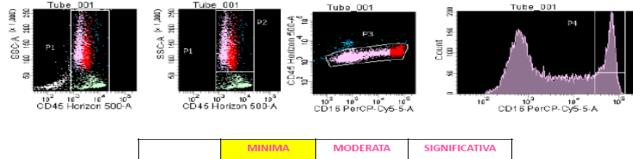
Includes patients with sustained MRD negativity at 6 mo after maintenance began

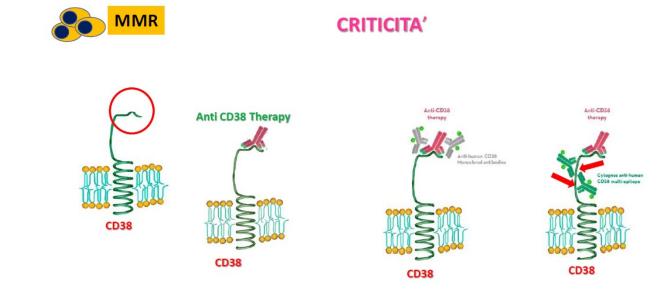

Pawlyn. ASH 2022. Abstr 570. Reproduced with permission.


EMODILUIZIONE

Preliminarmente in tutti i casi è necessario valutare il grado di contaminazione di sangue periferico determinando la quota di elementi mieloidi maturi (CD16^{bright}) (Loken et al Cytometry 2009).

	MINIMA	MODERATA	SIGNIFICATIVA
CD16 ^{bright}	< 30%	30%-60%	> 60 %




EMODILUIZIONE

Preliminarmente in tutti i casi è necessario valutare il grado di contaminazione di sangue periferico determinando la quota di elementi mieloidi maturi (CD16^{bright}) (Loken et al Cytometry 2009).

	MINIMA	MODERATA	SIGNIFICATIVA
CD16 ^{bright}	< 30%	30%-60%	> 60 %

MRD ASSESSMENT IN BM (MCF)

Table 1. MRD assessment by MFC.

	-	N° of		
Study	Treatment	patients	MFC	Results
Paiva et al. [5]	GEM2000 trial: VBMCP/VBAD plus ASCT	295	4-color	MRD- at day 100 after ASCT was predictive of superior PFS and OS, both among whole patient population and among patients who achieved CR
Paiva et al. [13]	GEM2005 > 65y trial: VMP vs. VTP	102	4-color	MRD– after 6 cycles of induction translated into superior PFS and TTP compared with CR or CR plus normal sFLCR
Paiva et al. [20]	GEM2000 trial: VBMCP/VBAD plus ASCT	241	4-color	MRD+ at day 100 after ASCT, and presence of baseline high-risk cytogenetics by FISH were the only independent factors that predicted unsustained CR
	GEM2005 < 65y trial: VBMCP/VBAD plus V in the last 2 cycles or TD or VTD, plus ASCT			
Rawstron et al. [6]	MRC Myeloma IX trial:	378	6-color	Intensive-pathway: MRD- at day 100 after ASCT was predictive of favorable PFS and OS.
	Intensive pathway: CTD vs. CVAD plus ASCT Non-intensive pathway: MP vs. CTDa	245		Nonintensive-pathway: MRD assessment after induction therapy did not seem to be predictive of outcome
Roussel et al. [21]	Phase II trial: VRD plus ASCT	31	7-color	Estimated 3-year PFS: 100% in MRD- vs. 23% in MRD+
Paiva et al. [22]	PETHEMA/GEM2010MAS65 study: sequential vs. alternating scheme VMP/Rd	162	8-color	MRD- at cycle 9 correlated better with prolonged TTP and OS than did patients in CR but MRD+ and those in less than CR

MFC: multiparameter flow cytometry; VBMCP: vincristine, camustine, melphalan, cydophosphamide, prednisone; VBAD: vincristine, camustine, doxorubicin, dexamethasone; ASCT: autologous stem cell transplantation; PFS: progression-free survival; OS: overall survival; CR: complete response; VMP: bortezomib-melphalan-prednisone; VTP: bortezomib-thalidomide-prednisone; VT: bortezomib-thalidomide; VP: bortezomib-prednisone; TTP: time to progression; sFLCR: serum free light chain k/λ ratio; V: bortezomib; TD: thalidomide-dexamethasone; VTD: bortezomib-thalidomide-dexamethasone; FISH: fluorescence *in situ* hybridization; CTD: cyclophosphamide-thalidomide-dexamethasone; CVAD: cyclo phosphamide-vincristine-doxorubicin-dexamethasone; MP: melphalan-predniso-lone; CTDa: attenuated CTD; VRD: bortezomib-lenalidomide-dexamethasone; Rd: lenalidomide-dexamethasone.

EXPERT REVIEW OF HEMATOLOGY, 2016 VOL. 9, NO. 9, 831–837 http://dx.doi.org/10.1080/17474086.2016.1212654

MOLECULAR Approaches

Next-Generation Sequencing

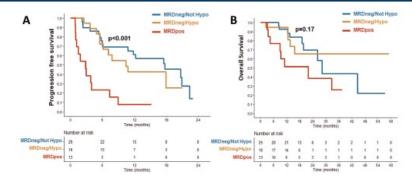
NGS MRD testing for MM identifies and quantifies rearranged immunoglobulin heavy chain (IgH) variable, diversity, and joining (VDJ) and diversity and joining (DJ) rearrangements and kappa and lambda rearrangements.⁵ An initial high tumor burden sample is needed to identify clonotypic sequences (clone identification [ID]) for tracking on subsequent assessments. Close to 95% of patients will have an identifiable clone ID at the time of diagnosis.^{6,7} MRD by NGS can be performed using the FDA-cleared clonoSEQ assay (Adaptive Biotechnologies), though other similar assays exist as well. With the maximum input of 20 μ g of DNA (which equates to approximately 2–3 million cellular equivalents), clonoSEQ has the highest sensitivity of the assays with an LoD of 6.8 \times 10⁻⁷ and an LoQ of 1.76 \times 10⁻⁶.

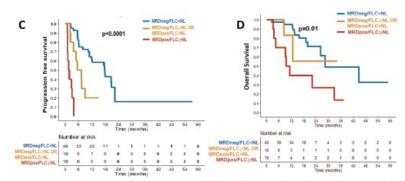
MRD negativity by NGS has been shown on a number of occasions to be associated with longer PFS and OS, regardless of International Staging System (ISS) staging, cytogenetic risk, or treatment.^{8–11} Although NGS offers a standardized way to achieve 10⁻⁶ sensitivity with fewer cells than next generation flow (NGF), it requires a baseline high tumor burden sample and offers no way to determine if samples are hemodiluted.

Blood Cancer Journal

Check for updates

www.nature.com/bci


ARTICLE OPEN Prognostic value of early bone marrow MRD status in CAR-T therapy for myeloma


Radhika Bansal (01,6 Mizba Baksh²⁶, Jeremy T. Larsen³⁶, Matthew A. Hathcock¹, David Dingli (01, A. Keith Stewart⁴, Prashant Kapoor 1, Taxiarchis Kourelis 1, Suzanne R. Hayman¹, Rahma M. Warsame¹, Rafael Fonseca 1, P. Leif Bergsagel 5, Sikander Allawadhi ()2, Shaji K. Kumar ()1,4 and Yi Lin ()1,6

© The Author(s) 2023

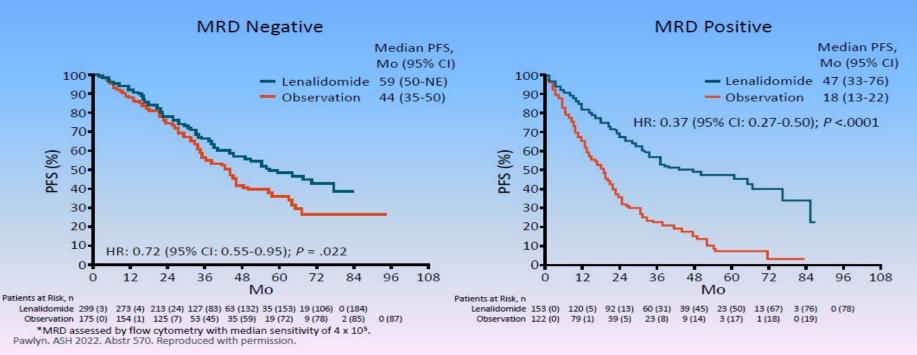
Bone marrow (BM) assessment of minimal residual disease (MRD) is prognostic for survival in multiple myeloma (MM), BM is still hypocellular at month 1 post CAR-T, thus the value of MRD negative (MRDneg) status at this timepoint is unclear. We examined the impact of month 1 BM MRD status in MM patients who received CART at Mayo Clinic between 8/2016 and 6/2021. Among 60 patients, 78% were BM-MRDneg at month 1: and 85% (40/47) of these patients also had decreased to less than normal level of both involved and uninvolved free light chain (FLC < NL). Patients who achieved CR/sCR had higher rates of month 1 BM-MRDneg and FLC < NL The rate of sustained BM-MRDneg was 40% (19/47). Rate of conversion from MRDpos to MRDneg was 5%(1/20). At month 1, 38%(18/47) of the BM-MRDneg were hypocellular. Recovery to normal cellularity was observed in 50%(7/14) with a median time to normalization at 12 months (range 3-Not reached). Compared to Month 1 BM-MRDpos patients, patients who were BM-MRDneg had longer PFS irrespective of BM cellularity (PFS: 2.9 months (95% CL 1.2-NR) vs. 17.5 months (95% CL 10.4-NR), p < 0.0001). Month 1 BM-MRDneg and FLC below normal were associated with prolonged survival. Our data support the continued evaluation of BM early post-CART infusion as a prognostic tool.

Blood Cancer Journal (2023)13:47; https://doi.org/10.1038/s41408-023-00820-y

1.2 Bone marrow MRD status and correlation with clinical outcome for patients with myeloma who received CAR-T. A Kaplan-Meier rive for progression free survival (PFS) between patients with month 1 BM MRDpos and MRDneg stratified by BM cellularity (top left). Kaplan-Meier curve for overall survival (OS) between patients with month 1 BM MRDpos and MRDneg stratified by BM cellularity (top right 12) Kaplan-Meier curve) for PFS among patients with month 1 BM MRDneg/FLC < NL, MRDneg/FLC >= NL or MRDpos/FLC < NL and MRDpos/ FLC > = NL(bottom right). D Kaplan-Meier curve for OS among patients with month 1 BM MRDneg/FLC < NL, MRDneg/FLC > = NL or MRDpos/ FLC < NL and MRDpos/FLC > = NL (bottom left).

Myeloma XI Trial: Study Design

- Open-label, randomized phase III study with 3 randomizations: induction (allocation by ASCT eligibility), intensification (allocation by response to induction therapy), and maintenance treatment
 - Current analysis: maintenance with lenalidomide monotherapy vs observation following ASCT



*Cyclophosphamide/thalidomide/dexamethasone or cyclophosphamide/lenalidomide/dexamethasone or carfilzomib/cyclophosphamide/lenalidomide/dexamethasone.

- Median follow-up: 44.7 mo (IQR: 32.4-62.7); median duration of lenalidomide therapy: 28 cycles (range: 1-96) with 45% of patients (330/730) still on therapy
- Endpoints: Overall PFS, PFS2; landmark PFS by genetic risk subgroups and MRD status Pawlyn. ASH 2022. Abstr 570.

Myeloma XI Trial: PFS From Maintenance Randomization by MRD Negativity Status

Myeloma XI Trial: PFS by Risk Status and MRD Status by Yr of Treatment (Landmark Analyses)

Outcome	Lenalidomide (n = 730)	Observation (n = 518)	HR (95% CI)	P
Median PFS by risk status, mo (95% CI)				
 Standard risk 				
- 2 yr	53 (42-NE)	29 (22-43)	0.44 (0.26-0.74)	.032
— 3 yr	NE (31-NE)	28 (11-NE)	0.46 (0.25-0.68)	.019
- 4 yr	NE (26-NE)	31 (16-NE)	0.71 (0.29-1.75)	.462
— 5 yr	NE (17-NE)	19 (5-NE)	0.46 (0.13-1.62)	.227
 High risk or ultra-high risk 				
- 2 yr	48 (30-NE)	20 (10-33)	0.44 (0.24-0.80)	.008
— 3 yr	NE (26-NE)	21 (8-NE)	0.59 (0.21-1.65)	.314
- 4 yr	NE (16-NE)	NE (1-NE)	0.54 (0.14-2.09)	.372
Median PFS by MRD status, mo (95% CI)				
 MRD negative 				
- 2 yr	53 (40-NE)	33 (22-NE)	0.63 (0.43-0.94)	.025
- 3 yr	NE (41-NE)	31 (21-NE)	0.65 (0.36-1.15)	.140
- 4 yr	NE (29-NE)	NE (17-NE)	0.68 (0.27-1.69)	.403
- 5 yr	NE (NE-NE)	NE (7-NE)	0.43 (0.11-1.72)	.232
 MRD positive 				
- 2 yr	61 (41-NE)	20 (10-28)	0.34 (0.15-0.51)	<.0001
- 3 yr	49 (40-NE)	16 (8-35)	0.28 (0.11-0.58)	.001
- 4 yr	37 (28-NE)	6 (O-NE)	0.14 (0.04-0.48)	.002

Pawlyn. ASH 2022. Abstr 570.

Myeloma XI Trial: Investigators' Conclusions

- Long-term results from Myeloma XI phase III trial demonstrated ongoing PFS improvement with continuing lenalidomide maintenance beyond 4-5 yr in patients with newly diagnosed MM after response to protocol-specified induction and ASCT
 - Continuing lenalidomide maintenance for ≥3 yr benefited patients with sustained MRD negativity, but benefit of additional lenalidomide maintenance is unclear
 - In MRD-positive patients, results support continuing lenalidomide until disease progression
- No evidence of cumulative hematologic toxicity observed with long-term lenalidomide maintenance
- Investigators concluded that additional data from ongoing studies needed to determine optimal duration of lenalidomide maintenance

Pawlyn. ASH 2022. Abstr 570.

Measurable Residual Disease and Decision-Making in Multiple Myeloma

Benjamin A. Derman, мD^{a,*}, Rafael Fonseca, мD^b

KEYWORDS

Multiple myeloma • MRD • Minimal residual disease • Measurable residual disease

KEY POINTS

- Measurable (minimal) residual disease (MRD) is one of the most powerful prognostic factors for progression-free survival and overall survival in multiple myeloma (MM).
- There are several ways to assess for MRD in MM; bone marrow methods such as nextgeneration sequencing and next-generation flow cytometry can achieve sensitivity up to 10⁻⁶.
- Each increase in MRD sensitivity threshold is associated with improved prognostication, and sustained MRD negativity carries greater significance than a single instance of MRD negativity.
- Peripheral blood techniques (ie, mass spectrometry) to assess for MRD are quickly moving from research only to clinical use.
- MRD-adapted clinical decision-making is controversial, but there is mounting evidence that MRD-guided de-escalation of therapy is feasible and may not compromise clinical outcomes.

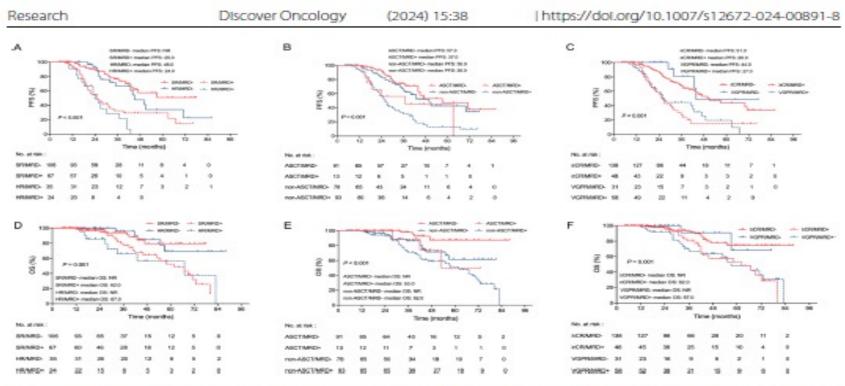


Fig. 2 PFS (A) and OS (D) in MM patients according to combined cytogenetic risk and MRD status. PFS (B) and OS (E) in MM patients according to combined ASCT and MRD status. PFS (C) and OS (F) in MM patients according to combined clinical response and MRD status